\(^{\left(x-2\right).\left(2x+3\right)}\)= 1

b)9

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

Câu a \(\left|2x-\frac{1}{3}\right|+\frac{5}{6}=1\)

19 tháng 4 2019

g) \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)

Vây \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)

13 tháng 4 2019

\(a,\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left[2x-2\right]\cdot2x}=\frac{1}{8}\)

\(\Rightarrow\frac{1}{2}\left[\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left[2x-2\right]\cdot2x}\right]=\frac{1}{8}\)

\(\Rightarrow\frac{1}{2}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right]=\frac{1}{8}\)

\(\Rightarrow\frac{1}{2}\left[\frac{1}{2}-\frac{1}{2x}\right]=\frac{1}{8}\)

\(\Rightarrow\left[\frac{1}{2}-\frac{1}{2x}\right]=\frac{1}{8}:\frac{1}{2}\)

\(\Rightarrow\left[\frac{1}{2}-\frac{1}{2x}\right]=\frac{1}{4}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)

\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}\)

\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\)

\(\Rightarrow2x=4\Leftrightarrow x=2\)

Vậy x = 2

13 tháng 4 2019

Mun ảnh đại diện cute

<3

À tk mk nhé. giờ mk tk bn trước

27 tháng 6 2019

\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)

=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)

=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)

Vậy \(x\in\left\{\frac{9}{20}\right\}\)

\(b,x+\frac{1}{4}=\frac{4}{3}\)

=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)

Vậy \(x\in\left\{\frac{13}{12}\right\}\)

\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)

=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)

Vậy \(x\in\left\{\frac{25}{42}\right\}\)

\(d,\left|x+5\right|-6=9\)

=> \(\left|x+5\right|=9+6=15\)

=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)

Vậy \(x\in\left\{10;-20\right\}\)

\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)

=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)

\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{6}\)

=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)

\(g,x^2=16\)

=> \(\left|x\right|=\sqrt{16}=4\)

=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

vậy \(x\in\left\{4;-4\right\}\)

\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)

=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)

Vậy \(x\in\left\{\frac{5}{6}\right\}\)

\(i,3^3.x=3^6\)

\(x=3^6:3^3=3^3=27\)

Vậy \(x\in\left\{27\right\}\)

\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)

=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)

Vậy \(x\in\left\{\frac{5}{27}\right\}\)

\(k,1\frac{2}{3}:x=6:0,3\)

=> \(\frac{5}{3}:x=20\)

=> \(x=\frac{5}{3}:20=\frac{1}{12}\)

Vậy \(x\in\left\{\frac{1}{12}\right\}\)

30 tháng 4 2019

c) \(\left(2x-3\right).\left(6-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{3}{2};3\right\}\)

e) \(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)

\(\Leftrightarrow2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)

\(\Leftrightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}:2=\frac{7}{4}.\frac{1}{2}=\frac{7}{8}\)

\(\Rightarrow\left[{}\begin{matrix}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=\left(-\frac{7}{8}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{29}{12}\\x=\frac{-13}{12}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{29}{12};\frac{-13}{12}\right\}\)

30 tháng 4 2019

Mấy bài này ko quá khó, tải MathPhoto trong đt về nó tự lm

12 tháng 8 2020

a) \(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}..1\frac{1}{99}=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{100}{99}=\frac{2.2.3.3.4.4...10.10}{1.3.2.4.3.5...9.11}=\frac{\left(2.3.4...10\right)\left(2.3.4...10\right)}{\left(1.2.3...9\right)\left(3.4.5...11\right)}\)

\(\frac{10.2}{1.11}=\frac{20}{11}\)

b) \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).\left(1-\frac{1}{25}\right).\left(1-\frac{1}{36}\right)=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.\frac{35}{36}\)

\(=\frac{1.3.2.4.3.5.4.6.5.7}{2.2.3.3.4.4.5.5.6.6}=\frac{\left(1.2.3.4.5\right).\left(3.4.5.6.7\right)}{\left(2.3.4.5.6\right).\left(2.3.4.5.6\right)}=\frac{1.7}{6.2}=\frac{7}{12}\)

c) \(\frac{99}{98}-\frac{98}{97}+\frac{1}{97.98}=\frac{99}{98}-\frac{98}{97}+\frac{1}{97}-\frac{1}{98}=\left(\frac{99}{98}-\frac{1}{98}\right)+\left(-\frac{98}{97}+\frac{1}{97}\right)=1-1=0\)

d) \(3\frac{1}{11}.\frac{27}{36}.1\frac{6}{7}.2\frac{4}{9}=\frac{34}{11}.\frac{3}{4}.\frac{13}{7}.\frac{22}{9}=\frac{34.3.13.22}{11.4.7.9}=\frac{34.13}{11.2.7.3}=\frac{442}{462}=\frac{221}{231}\)