\(\left(\frac{4}{3}+1\right)\)-4x.(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,5\left(x^2-3x+1\right)+x\left(1-5x\right)=x-2\)

\(\Leftrightarrow5x^2-15x+5+x-5x^2-x+2=0\)

\(\Leftrightarrow-15x+7=0\)

\(\Leftrightarrow-15x=-7\)

\(\Leftrightarrow x=-\frac{7}{-15}\)

\(\Leftrightarrow x=\frac{7}{15}\)

4 tháng 7 2019

a) 5.(x^2-3x+1)+x.(1-5x)=x-2

\(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)

\(\Leftrightarrow-14x-x=-2-5\)

\(\Leftrightarrow-15x=-7\)

\(\Leftrightarrow x=\frac{7}{15}\)

b\(,3x.\left(\frac{4}{3}+1\right)-4x\left(x-2\right)=10\)

\(\Leftrightarrow4x+3x-4x^2+8x-10=0\)

\(\Leftrightarrow-4x^2+15x-10=0\)

Đề sai???

\(c,12x^2-4x\left(3x-5\right)=10x-17\)

\(\Leftrightarrow12x^2-12x^2+20x-10x=-17\)

\(\Leftrightarrow10x=-17\)

\(\Leftrightarrow x=-\frac{17}{10}\)

\(d,4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)

\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)

\(\Leftrightarrow8x=12\)

\(\Leftrightarrow x=\frac{3}{2}\)

1: \(\Leftrightarrow-4x^2+3x-4x^2+8x=10\)

=>-8x^2+11x-10=0

=>\(x\in\varnothing\)

2: \(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)

=>-14x+5=x-2

=>-15x=-7

=>x=7/15

3: \(\Leftrightarrow12x^2-12x^2+20x=10x-17\)

=>10x=-17

=>x=-17/10

4: \(\Leftrightarrow4x^2-2x+3-4x^2+20x=7x-3\)

=>18x+3=7x-3

=>11x=-6

=>x=-6/11

5: \(\Leftrightarrow-3x+15+5x-5+3x^2=4-x\)

\(\Leftrightarrow3x^2+2x+10-4+x=0\)

=>3x^2+3x+6=0

hay \(x\in\varnothing\)

16 tháng 12 2022

a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)

\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)

=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0

=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0

=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0

=>(2x^2+120+35x)(2x^2+31x+120)=0

=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)

b: Đặt x^2-3x=a

Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)

\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)

=>(3a+10)(a+5)=6(a^2+7a+12)

=>6a^2+42a+72=3a^2+15a+10a+50

=>3a^2+17a+22=0

=>x=-2 hoặc x=-11/3

a) ĐKXĐ: \(x\ne1\)

Ta có: \(\frac{7x-3}{x-1}=\frac{2}{3}\)

\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow21x-9-2x+2=0\)

\(\Leftrightarrow19x-7=0\)

\(\Leftrightarrow19x=7\)

hay \(x=\frac{7}{19}\)

Vậy: \(x=\frac{7}{19}\)

b) ĐKXĐ: \(x\ne-1\)

Ta có: \(\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\)

\(\Leftrightarrow4\left(3-7x\right)=1+x\)

\(\Leftrightarrow12-28x-1-x=0\)

\(\Leftrightarrow11-29x=0\)

\(\Leftrightarrow29x=11\)

hay \(x=\frac{11}{29}\)

Vậy: \(x=\frac{11}{29}\)

c) ĐKXĐ: \(x\notin\left\{\frac{-2}{3};\frac{1}{3}\right\}\)

Ta có: \(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)

\(\Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)

\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)

\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)

\(\Leftrightarrow15x^2-8x+1-15x^2+11x+14=0\)

\(\Leftrightarrow3x+15=0\)

\(\Leftrightarrow3x=-15\)

hay x=-5

Vậy: x=-5

d) ĐKXĐ: \(x\notin\left\{1;\frac{-4}{3}\right\}\)

Ta có: \(\frac{4x+7}{x-1}=\frac{12x+5}{3x+4}\)

\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)

\(\Leftrightarrow12x^2+16x+21x+28=12x^2-12x+5x-5\)

\(\Leftrightarrow12x^2+37x+28=12x^2-7x-5\)

\(\Leftrightarrow12x^2+37x+28-12x^2+7x+5=0\)

\(\Leftrightarrow44x+33=0\)

\(\Leftrightarrow44x=-33\)

hay \(x=\frac{-3}{4}\)

Vậy: \(x=\frac{-3}{4}\)

18 tháng 4 2020

a)

\(\frac{7x-3}{x-1}=\frac{2}{3}\\ \Leftrightarrow\frac{21x-9}{3\cdot\left(x-1\right)}-\frac{2x-2}{3\cdot\left(x-1\right)}=0\\ \Leftrightarrow\frac{21x-9-2x+2}{3\cdot\left(x-1\right)}=0\\ \Leftrightarrow\frac{19x-7}{3\cdot\left(x-1\right)}=0\\ \Rightarrow19x-7=0\\ \Rightarrow x=\frac{7}{19}\)

b)

\(\frac{2\cdot\left(3-7x\right)}{1+x}=\frac{1}{2}\\ \Leftrightarrow\frac{12-28x}{2\cdot\left(1+x\right)}-\frac{1+x}{2\cdot\left(1+x\right)}=0\\ \Leftrightarrow\frac{12-28x-1-x}{2\cdot\left(1+x\right)}=0\\ \Leftrightarrow\frac{11-29x}{2\cdot\left(1+x\right)}=0\\\Rightarrow11-29x=0\\ \Rightarrow x=\frac{11}{29}\)

c)

\(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\\ \Leftrightarrow\frac{15x^2-8x+1}{\left(3x+2\right)\cdot\left(3x-1\right)}-\frac{15x^2-11x-14}{\left(3x+2\right)\cdot\left(3x-1\right)}=0\\ \Leftrightarrow\frac{15x^2-8x+1-15x^2+11x+14}{\left(3x+2\right)\cdot\left(3x-1\right)}=0\\ \Leftrightarrow\frac{3x+15}{\left(3x+2\right)\cdot\left(3x-1\right)}=0\\ \Rightarrow3x+15=0\\ \Rightarrow x=-5\)

d)

\(\frac{4x+7}{x-1}=\frac{12x+5}{3x+4}\\ \Leftrightarrow\frac{12x^2+37x+28}{\left(x-1\right)\cdot\left(3x+4\right)}-\frac{12x^2-7x-5}{\left(x-1\right)\cdot\left(3x+4\right)}=0\\ \Leftrightarrow\frac{12x^2+37x+28-12x^2+7x+5}{\left(x-1\right)\cdot\left(3x+4\right)}=0\\ \Leftrightarrow\frac{44x+33}{\left(x-1\right)\cdot\left(3x+4\right)}=0\\ \Leftrightarrow44x+33=0\\ \Rightarrow x=-\frac{3}{4}\)

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x