Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H I
XÉT \(\Delta BDC\)VÀ \(\Delta CEB\)
^E=^D=\(90^0\)
BC chung =>\(\Delta BDC=\Delta CEB\left(ch-gn\right)\)
^BCB=^EBC
=> ^DBC=^ECB mà ^ABC=^ACB nên ^IBE=^ICD
ta lại có EB=DC mà AB=AC nên AD=AE
Xét \(\Delta AEI\)VÀ \(\Delta ADI\)
AE=AD
^E=^D=\(90^0\) =>\(\Delta AEI=\Delta ADI\left(ch-cgv\right)\)
AI chung =>^EAI=^DAI
XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)
AB=AC
AH chung =>\(\Delta ABH=\Delta ACH\left(c-g-c\right)\)
^EAI=^DAI =>^AHB=^AHC
MÀ ^AHB + ^AHC=\(180^0\)NÊN ^AHB=^AHC=\(90^0\)
VẬY \(AH\perp BC=\left\{H\right\}\)
a) xét tgiac vuông BDC và tgiac vuông CEB có:
BC là cạnh chung
góc B=góc C(gt)
=> tgiac vuông BDC=tgiac vuông ICD( cạnh huyền-góc nhọn)(góc-cạnh-góc í)
b) ta có tgiac BDC= tgiac IBC + tgiac ICD
và tgiac CEB= tgiac IBC +tgiac IBE
mà tgiac BDC=tgiacCEB(cmt)
=> tgiac ICD=tgiac IBE
=> góc IBE= góc ICD( hai góc tương ứng)
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp