Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+3\right)^2-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-2x^2=54\)
=> x2 + 6x + 9 - x(9x2 + 6x + 1) + (2x)3 + 13 - 2x2 = 54
=> x2 + 6x + 9 - 9x3 - 6x2 - x + 8x3 + 1 - 2x2 = 54
=> (-9x3 + 8x3) + (x2 - 6x2 - 2x2) + (6x - x) + (9 + 1) = 54
=> -x3 - 7x2 + 5x + 10 = 54
=> -(x3 + 7x2 - 5x - 10) = 54
=> phương trình vô nghiệm
b) (x + 3)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 + 3x = -33
=> x3 + 9x2 + 27x + 27 - (x3 - 33) + 6(x2 + 2x + 1) + 3x = -33
=> x3 + 9x2 + 27x + 27 - x3 + 27 + 6x2 + 12x + 6 + 3x = -33
=> (x3 - x3) + (9x2 + 6x2) + (27x + 12x + 3x) + (27 + 27 + 6) = -33
=> 15x2 + 42x + 60 = -33
=> 15x2 + 42x + 60 + 33 = 0
=> 15x2 + 42x + 93 = 0
=> 3(5x2 + 14x + 31) = 0
=> 5x2 + 14x + 31 = 0
=> không tìm được x
\(a.x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-5^2\right)-\left(x^3+2^3\right)=3\)
\(\Leftrightarrow x^3-25x-x^3-8=3\)
\(\Leftrightarrow x^3-x^3-25x=8+3\)
\(\Leftrightarrow x=\frac{11}{-25}\)
Vậy x có nghiệm là \(\frac{-11}{25}.\)
\(\)
\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\) \(=52\)
\(12\left(x^2-4\right)-3\left(4x^2+12x+9\right)\) \(=52\)
\(12x^2-48-12x^2-36x-27\) \(=52\)
\(-36x-75=52\)
\(-36x=127\)
\(x=\frac{-127}{36}\)
\(\left(2x+1\right)^2-4\left(x-1\right)\left(x+1\right)\) \(+2x=5\)
\(4x^2+4x+1-4\left(x^2-1\right)\) \(+2x=5\)
\(4x^2+4x-1-4x^2+4+2x=5\)
\(6x+3=5\)
\(6x=2\)
\(x=3\)
\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\) \(+6\left(x-1\right)^2=15\)
\(x^3-6x^2+12x-8-\left(x-3\right)\left(x+3\right)^2\) \(+6\left(x^2-2x+1\right)=15\)
\(x^3-6x^2+12x-8-\left(x^2-9\right)\left(x+3\right)\) \(+6x^2-12x+6=15\)
\(x^3-2\) \(-\left(x^3+3x^2-9x-27\right)\)\(=15\)
\(x^3-2-x^3-3x^2+9x+27=15\)
\(-3x^2+9x+25=15\)
\(-3x^2+9x+10=0\)
\(-3\left(x^2-3x-\frac{10}{3}\right)\) \(=0\)
\(x=\frac{9+\sqrt{201}}{6}\)
các câu còn lại tương tự
a) \(\left(x+2\right)^2-9=0\)
\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)
\(=>\left(x-1\right).\left(x+5\right)=0\)
\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy x= 1 hoặc x= -5
b) \(x^2-2x+1=25\)
\(=>x^2-2.x.x+1^2=25\)
\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)
\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)
\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
Vậy x= 6 hoặc x= -4
c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)
\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)
\(=>4x\left(x-1\right)-4x^2+25-1=0\)
\(=>4x\left(x-1\right)-4x^2+24=0\)
\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)
..................... tắc ròi -.-"
d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)
\(=>x^3+27-x^3-3x=15\)
\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)
Vì \(3>0=>4-x=0=>x=4\)
Vậy x= 4
e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)
\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)
\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)
\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)
\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'
\(x^3\left(2x-1\right)^{m+2}:x^3\left(2x-1\right)^{m-1}-3^5:3^2=0\)
\(x^3\left(2x-1\right)^{m+2-m+1}-3^{5-2}=0\)
\(x^3\left(2x-1\right)^3-3^3=0\)
\(\left[x\left(2x-1\right)\right]^3-3^3=0\)
\(\left[x\left(2x-1\right)-3\right]\left[\left(2x^2-x\right)^2+6x^2-3x+9\right]=0\)
con lai ban tu lam nha
day la hang dang thuc hieu hai lap phuong
ban cu ap dung cong thuc ma lam
\(x^3\left(2x-1\right)^{m+2}:x^3\left(2x-1\right)^{m-1}-3^5:3^2=0\)
\(x^3\left(2x-1\right)^{m+2-m+1}-3^{5-2}=0\)
\(x^3\left(2x-1\right)^3-3^2=0\)
\(\left[x\left(2x-1\right)\right]^3-3^2=0\)
\(\left(2x^2-x\right)^3-3^2=0\)
\(\left(2x^2-x\right)\left[\left(2x^2-x\right)^2-3^2\right]=0\)
\(\left(2x^2-x\right)\left(2x^2-x-3\right)\left(2x^2-x+3\right)=0\)
\(\)
a) \(3a^3\left(x^2-1\right)^4:3a^3\left(x^2-1\right)^3\)
\(=3a^3\left(x^2-1\right)^3\left(x^2-1\right):3a^3\left(x^2-1\right)^3\)
\(=x^2-1\)
Mà \(3a^3\left(x^2-1\right)^4:3a^3\left(x^2-1\right)^3=15\)
\(\Rightarrow x^2-1=15\)
\(\Leftrightarrow x=\pm4\)
b) \(x^3\left(2x-1\right)^{m+2}:x^3\left(2x-1\right)^{m-1}\)
\(=x^3\left(2x-1\right)^{m-1}.m^3:x^3\left(2x-1\right)^{m-1}\)
\(=m^3\)
Mà \(x^3\left(2x-1\right)^{m+2}:x^3\left(2x-1\right)^{m-1}=3^5:3^2\)
\(\Rightarrow m^3=3^5:3^2\)
\(\Leftrightarrow m^3=3^3\)
\(\Leftrightarrow m=3\)
\(\left(x-1\right)^3+\left(x+2\right)^3=\left(2x+3\right)^3\)
\(\Leftrightarrow x^3-3x^2+3x-1+x^3+6x^2+12x+8=8x^3+36x^2+54x+27\)
\(\Leftrightarrow2x^3+3x^2+15x+7-8x^3-36x^2-54x-27=0\)
\(\Leftrightarrow-\left(6x^3+33x^2+39x+20\right)=0\)
Đến đây e ko phân tích thành nhân tử dc nx.mn help e vs:))