Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+13⋮x+1\)
\(\Rightarrow\left(x+1\right)+12⋮x+1\)
\(\Rightarrow12⋮x+1\)
\(\Rightarrow x+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Rồi bn tự lm tiếp nhé
a, \(21\in B\left(x-3\right)\Leftrightarrow x-3\inƯ\left(21\right)\Leftrightarrow x-3\in\left\{1;3;7;21;-1;-3;-7;-21\right\}\)
\(\Leftrightarrow x\in\left\{4;6;10;24;2;0;-4;-18\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{4;6;10;24;2;0\right\}\)
b, \(1-x\inƯ\left(17\right)\Leftrightarrow1-x\in\left\{1;17;-1;-17\right\}\)
\(\Leftrightarrow x\in\left\{0;-16;2;18\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{0;2;18\right\}\)
c, \(2x+3\in B\left(2x-1\right)\)
\(\Leftrightarrow2x+3⋮2x-1\Leftrightarrow2x-1+4⋮2x-1\Leftrightarrow4⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(4\right)\Leftrightarrow2x-1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Leftrightarrow x\in\left\{1;\frac{3}{2};\frac{5}{2};0;\frac{-1}{2};\frac{-3}{2}\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{1;0\right\}\)
d, \(x+1\inƯ\left(x^2+x+3\right)\Leftrightarrow x^2+x+3⋮x+1\Leftrightarrow x\left(x+1\right)+3⋮x+1\Leftrightarrow3⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(3\right)\Leftrightarrow x+1\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;-4\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{0;2\right\}\)
b , x là mọi giá trị thuộc N . ta có vài ví dụ : 6 + 3 chia hết cho 6 + 3 ; 199999999 + 3 chia hết cho 199999999 + 3 . nói chung kết quả cuối cùng đều = 1
\(a.\left(2x+5\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(x+x+1+1+3\right)⋮\left(x+1\right)\)
\(\Rightarrow3⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{1;3\right\}\)
\(\Rightarrow x\in\left\{0;2\right\}\)
\(b.\left(2x+8\right)⋮\left(2x+1\right)\)
\(\Rightarrow\left(2x+1+7\right)⋮\left(2x+1\right)\)
\(\Rightarrow7⋮\left(2x+1\right)\)
\(\Rightarrow2x+1\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{1;7\right\}\)
\(\Rightarrow x\in\left\{0;3\right\}\)
a) Để \(-1:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-1\right)\in\left\{\pm1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
b) Để \(1:x+1\)là số nguyên
\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x+1=1\)\(\Leftrightarrow\)\(x=1-1=0 \left(TM\right)\)
+ \(x+1=-1\)\(\Leftrightarrow\)\(x=-1-1=-2\left(TM\right)\)
Vậy \(x\in\left\{-2; 0\right\}\)
c) Để \(-2:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-2\right)\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{-1;-2;1;2\right\}\)
d) Để \(3:x-2\)là số nguyên
\(\Rightarrow\)\(x-2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(1\) | \(3\) | \(-1\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1;1;3;5\right\}\)
e) Ta có: \(x+8=\left(x-7\right)+15\)
- Để \(x+8⋮x-7\)\(\Leftrightarrow\)\(\left(x-7\right)+15⋮x-7\)mà \(x-7⋮x-7\)
\(\Rightarrow\)\(15⋮x-7\)\(\Rightarrow\)\(x-7\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(x-7\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(x\) | \(6\) | \(8\) | \(4\) | \(10\) | \(2\) | \(12\) | \(-8\) | \(22\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-8;2;4;6;8;10;12;22\right\}\)
f) Ta có: \(2x+9=\left(2x-10\right)+19=2.\left(x-5\right)+19\)
- Để \(2x+9⋮x-5\)\(\Leftrightarrow\)\(2.\left(x-5\right)+19⋮x-5\)mà \(2.\left(x-5\right)⋮x-5\)
\(\Rightarrow\)\(19⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(19\right)\in\left\{\pm1;\pm19\right\}\)
- Ta có bảng giá trị:
\(x-5\) | \(-1\) | \(1\) | \(-19\) | \(19\) |
\(x\) | \(4\) | \(6\) | \(-14\) | \(24\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-14;4;6;24\right\}\)
g) Ta có: \(2x+16=\left(2x-16\right)+32=2.\left(x-8\right)+32\)
- Để \(2x+16⋮x-8\)\(\Leftrightarrow\)\(2.\left(x-8\right)+32⋮x-8\)mà \(2.\left(x-8\right)⋮x-8\)
\(\Rightarrow\)\(32⋮x-8\)\(\Rightarrow\)\(x-8\inƯ\left(32\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16;\pm32\right\}\)
- Ta có bảng giá trị:
\(x-8\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) | \(-16\) | \(16\) | \(-32\) | \(32\) |
\(x\) | \(7\) | \(9\) | \(6\) | \(10\) | \(4\) | \(12\) | \(0\) | \(16\) | \(-8\) | \(24\) | \(-24\) | \(40\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-24;-8;0;4;6;7;9;10;12;16;24;40\right\}\)
h) Ta có: \(5x+2=\left(5x-5\right)+7=5.\left(x-1\right)+7\)
- Để \(5x+2⋮x-1\)\(\Leftrightarrow\)\(5.\left(x-1\right)+7⋮x-1\)mà \(5.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(7⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(0\) | \(2\) | \(-6\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\)
k) Ta có: \(3x=\left(3x-6\right)+6=3.\left(x-2\right)+6\)
- Để \(3x⋮x-2\)\(\Leftrightarrow\)\(3.\left(x-2\right)+6⋮x-2\)mà \(3.\left(x-2\right)⋮x-2\)
\(\Rightarrow\)\(6⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(x\) | \(1\) | \(3\) | \(0\) | \(4\) | \(-1\) | \(5\) | \(-4\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4;-1;0;1;3;4;5;8\right\}\)
6 chia hết cho x-1
=>x-1 thuộc U(6)={1;-1;2;-2;3;-3;6;-6}
x-1=1=>x=2
x-1=2=>x=3
x-1=3=>x=4
x-1=6=>x=7
x-1=-1=>x=0
x-1=-2=>x=-1
x-1=-3=>x=-2
x-1=-6=>x=-5
vì x EN
=>x thuộc {0;2;3;4;7}
b,
10 chia hết cho 2x+1
=>2x+1 thuộc U(10)={1;2;5;10}
2x+1=1=>2x=0=>x=0
2x+1=2=>2x=1=>x=1/2
2x+1=5=>2x=4=>x=2
2x+1=10=>2x=9=>x=9/2
vì xEN nên x E{0;2}
...