K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

DAP SO DAU BAN

 

10 tháng 1 2016

a) n + 3 : n - 1

=>(n - 1)+4 : n - 1

=>4 : n - 1

=> n - 1 thuộc Ư(4)={-4;-2;-1;1;2;4}

Ta có bảng:

n - 1-4-2-1124
n-3-10235

 

=>n thuộc {-3;-1;0;2;3;5}

mà n lại thuộc N

=> n thuộc {0;2;3;5}

b) 4n+3 : 2n+1

=>2(2n+1)+1 : 2n+1

=> 1 : 2n+1

=> 2n+1 thuộc Ư(1)={-1;1}

Ta có bảng:

2n+1-11
2n-20
n-10

 

=> n thuộc {-1;0}

mà n thuộc N

=> n=0

 

12 tháng 2 2016

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản 

=> 2n+3 cà 4n+1 có ước chung là 1

 

20 tháng 9 2019

Rút gọn ta được \(A=\frac{9n-9}{n-3}=\frac{9n-27+18}{n-3}=\frac{9\left(n-3\right)}{n-3}+\frac{18}{n-3}=9+\frac{18}{n-3}\)

Để A là số tự nhiên thì \(9+\frac{18}{n-3}\)cũng là số tự nhiên

Suy ra \(\frac{18}{n-3}\)là số tự nhiên , nên 18 chia hết cho n-3

n-3=1; n-3=2; n-3=3; n-3=6; n-3=9; n-3=18 

Vậy n=4; n=5; n=6; n=9; n=12; n=21

20 tháng 9 2019

thankssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 

13 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

6 tháng 1 2019

a) 2n - 4 ⋮ n - 3

2n - 6 + 2 ⋮ n - 3

2( n - 3 ) + 2 ⋮ n - 3

Vì 2( n - 3 ) ⋮ n - 3

=> 2 ⋮ n - 3

=> n - 3 thuộc Ư(2) = { 1; -1; 2; -2 }

=> n thuộc { 4; 2; 5; 1 }

Vậy,......

- Các câu còn lại tương tự

6 tháng 1 2019

\(a,2n-4⋮n-3\Leftrightarrow2n-6+2⋮n-3\)

\(\Leftrightarrow2\left(n-3\right)+2⋮n-3\Leftrightarrow2⋮n-3\left(n-3\inℤ\right)\)

\(\Leftrightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Leftrightarrow n\in\left\{2;4;1;5\right\}\)

Vậy \(n=1;2;4;5\)

10 tháng 11 2017

với dạng bài này ta phải tách số bị chia thành tổng hoặc hiệu 2 số trong đó có một số chia hết cho số chia

câu a)  2n +5 = 2n -1 +6

vì 2n -1 chia hết cho 2n -1  nên để 2n +5 chia hết cho 2n -1 khi 6 chia hết cho 2n -1

suy ra 2n -1 là ước của 6

vì 2n -1 là số lẻ nên 2n -1 \(\in\) {1;3}

n=1; 2

17 tháng 7 2020

c) Gọi ƯCLN(4n + 3;5n+4) = d

=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)

=> d = 1

=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau 

=> \(\frac{4n+3}{5n+4}\)là phân số tối giản

d) Gọi ƯCLN(n+1;2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

f)  Gọi ƯCLN(3n + 2;5n + 3) = d

=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)

=> d = 1

=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau 

=> \(\frac{3n+2}{5n+3}\)là phân số tối giản

17 tháng 7 2020

a) Gọi ƯCLN(n + 3;n + 4) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau

=> \(\frac{n+3}{n+4}\)là phân số tối giản

b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d

Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau

=> \(\frac{3n+3}{9n+8}\)phân số tối giản