\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

2)So sáng : Q và 2<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

1.

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)

2.

a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}

b) ĐK:x\(\ge-3\)

\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)

Vậy S={-2}

3.

a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)

Vậy GTNN của A=\(\dfrac{3}{4}\)

27 tháng 10 2022

a: \(Q=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3x+8\sqrt{x}-5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\left(\sqrt{x}+3\right)}\)

b: Để Q=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)

=>-10căn x+4=căn x+3

=>-11 căn x=-1

=>x=1/121

Bài 2: 

a: \(\sqrt{4-x^2}>=0\)

Dấu '=' xảy ra khi x=2 hoặc x=-2

b: \(\sqrt{x^2-x+3}=\sqrt{x^2-x+\dfrac{1}{4}+\dfrac{11}{4}}\)

\(=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}>=\dfrac{\sqrt{11}}{2}\)

Dấu '=' xảy ra khi x=1/2

c: \(x+\sqrt{x}+1>=1\)

=>1/(x+căn x+1)<=1

Dấu '=' xảy ra khi x=0

Bài 1:

a: \(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{9x-1}:\dfrac{3}{3\sqrt{x}+1}\)

\(=\dfrac{3x+3\sqrt{x}}{9x-1}\cdot\dfrac{3\sqrt{x}+1}{3}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

b: \(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

27 tháng 10 2022

1: Sửa đề: \(B=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

2: Để B<=-1/2 thì B+1/2<=0

=>-3/căn x+3+1/2<=0

=>-6+căn x+3<=0

=>căn x<=3

=>0<x<9

3: Để B là số nguyên thì \(\sqrt{x}+3=3\)

=>x=0

19 tháng 2 2019

1 )Ta có :

\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}>\dfrac{1}{6}\)

\(\Rightarrow6\left(\sqrt{x}-2\right)>3\sqrt{x}\)

\(\Rightarrow6\sqrt{x}-3\sqrt{x}-2>0\)

\(\Rightarrow3\sqrt{x}>2\)

\(\Rightarrow\sqrt{x}>\dfrac{2}{3}\)

\(\Rightarrow x>\dfrac{4}{9}\)

2)

Giả sử

\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}>\dfrac{1}{3}\)

=> \(3\sqrt{x}>x+\sqrt{x}+1\)

\(\Rightarrow x+\sqrt{x}+1-3\sqrt{x}< 0\)

\(\Rightarrow\left(x-2\sqrt{x}+1\right)< 0\Leftrightarrow\left(\sqrt{x-1}\right)^2< 0\) ( vô lí )

Bất đẳng thức trên là sai, mà các phép biến dổi là tương đương

\(\Rightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}< \dfrac{1}{3}\)

19 tháng 2 2019

câu 2 tớ nhầm chỗ kết luận, phải là :

\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\le\dfrac{1}{3}\) nhé, chỗ dòng cuối cùng đấy, còn bên trên thì không ảnh hưởng gì cả

9 tháng 4 2018

\(A=B:C\)

\(C=\dfrac{x+\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\)

\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}+\dfrac{2-x}{x-\sqrt{x}}=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(\left\{{}\begin{matrix}x>0;\ne1\\A=\dfrac{x}{\sqrt{x}-1}\end{matrix}\right.\)

9 tháng 11 2017

Câu 3

a, ĐKXĐ: x>0, x\(\ne\)4

M=( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\)). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b, Thay x= \(6+4\sqrt{2}\) ( x>0, x\(\ne\)4) ta có:

M= \(\dfrac{\sqrt{6+4\sqrt{2}}}{\sqrt{6+4\sqrt{2}}-2}\)

= \(\dfrac{\sqrt{\left(\sqrt{2}+2\right)^2}}{\sqrt{\left(\sqrt{2}+2\right)^2-2}}\) = \(\dfrac{\sqrt{2}+2}{\sqrt{2}+2-2}\)

= \(\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{\sqrt{2}}\) = \(1+\sqrt{2}\)

Vậy khi x= \(6+4\sqrt{2}\) thì M= \(1+\sqrt{2}\)

c, Để M<1 <=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 1\)

<=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)

<=> \(\dfrac{2}{\sqrt{x}-2}< 0\)

Vì 2>0 <=> \(\sqrt{x}-2< 0\)

<=> \(\sqrt{x}< 2\)

<=> x<4

Vậy để M<1 thì 0<x<4

<=>

9 tháng 11 2017

Câu 2

a, \(\sqrt{3x+2}=5\) (x\(\ge\dfrac{-2}{3}\))

<=> \(\sqrt{3x+2}=\sqrt{25}\)

<=> 3x+2=25

<=> 3x= 23

<=> x=\(\dfrac{23}{3}\)

Vậy S= \(\left\{\dfrac{23}{3}\right\}\)