\(\dfrac{\sqrt{-3}}{2-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

A sẽ không được xác định với mọi x 

Vì: \(\sqrt{-3}\) biểu thức trong căn luôn dương nên

\(\sqrt{-3}\) vô lý 

Vậy: ...

20 tháng 6 2019

a)\(\sqrt{-8x}\)có nghĩa khi \(-8x\ge0\Leftrightarrow x\le0\)

b)\(\sqrt{\left(\sqrt{3}-x\right)^2}\)có nghĩa khi \(\left(\sqrt{3}-x\right)^2\ge0\Leftrightarrow\sqrt{3}-x\ge0\Leftrightarrow x\le\sqrt{3}\)

c)\(\frac{16x-1}{\sqrt{x-7}}\)có nghĩa khi \(\hept{\begin{cases}\sqrt{x-7}\ne0\\x-7\ge0\end{cases}\Leftrightarrow x-7}>0\Leftrightarrow x>7\)

 \(a,-8x>0\Rightarrow x< 0\)

\(b,x\in R\)

\(c,\hept{\begin{cases}\sqrt{x-7}\ne0\\x-7>0\Rightarrow x>7\end{cases}}\)

2 tháng 12 2019

Có đặt cái nick name mak mất dạy VC

a

Để \(\sqrt{\frac{1}{x-1}}\) xác định thì \(\frac{1}{x-1}\ge0\)

\(\Leftrightarrow x-1>0\)

\(\Leftrightarrow x>1\)

c

Để \(\sqrt{x^2+1}\) xác định thì \(x^2+1\ge0\) ( điều này luôn đúng )

Vậy \(\sqrt{x^2+1}\) xác định với mọi x

a: ĐKXĐ: \(\left\{{}\begin{matrix}3-x>=0\\x>=0\\3-x< >4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le3\\x< >-1\end{matrix}\right.\Leftrightarrow0\le x\le3\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\7-2x>=0\\x-2< >7-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\le x\le\dfrac{7}{2}\\x< >3\end{matrix}\right.\)

9 tháng 8 2020

Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó 

\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)

b)

\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)

\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)

Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)

5 tháng 6 2019

a) \(\text{ĐKXĐ:}3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)

b) \(\text{ĐKXĐ:}\left(x+2\right)\left(2x-3\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge\frac{3}{2}\end{cases}}\)

Đúng không ta?:3

20 tháng 8 2017

a) \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\orbr{\begin{cases}x\ge3\\x\ge-3\end{cases}}\)

b) \(-x-2\ge0\Leftrightarrow-x\ge2\Leftrightarrow x\ge-2\)

c) \(x^2+2x+1=\left(x+1\right)^2\)

\(\Rightarrow\left(x+1\right)^2\ge0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)

25 tháng 8 2019

ĐKXĐ:

\(1-\sqrt{x^2-3}\ne0\)

\(\Rightarrow\sqrt{x^2-3}>1\)

\(\Rightarrow x^2-3>1\)

\(\Rightarrow x^2>4\)

=> \(x>2\) hoặc x\(< -2\)

25 tháng 8 2019

*Ta xét biểu thức trong căn

\(\sqrt{x^2-3}=\sqrt{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}\ge0\)

\(\Leftrightarrow x+\sqrt{3}\)và \(x-\sqrt{3}\)cùng dấu.

Mà \(x-\sqrt{3}< x+\sqrt{3}\)nên \(\hept{\begin{cases}x-\sqrt{3}>0\\x+\sqrt{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\sqrt{3}\\x< -\sqrt{3}\end{cases}}\)

*Xét biểu thức dưới mẫu

\(1-\sqrt{x^2-3}\ne0\Leftrightarrow\sqrt{x^2-3}\ne1\)

\(\Leftrightarrow x^2-3\ne1\Leftrightarrow x\ne\pm2\)