Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tỉ số giữa 48 giờ và 3,2 giờ là:
48:3,2=15:1
c: \(\dfrac{-36}{7}\cdot\dfrac{2}{3}=\dfrac{-72}{21}=\dfrac{-24}{7}\)
1/
a/ A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120
=> 3A - A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120 - (1 + 3 + 3^2 + 3^3 + ... + 3^119)
=> 2A = 3^120 - 1
=> A = (3 ^120 - 1)/2
b/ 2A + 1 = 27x
<=> 3^120 = 27x
<=> 27^40 = 27x
<=> x = 40
c/ +) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
= (1 + 3^2) + (3 + 3^3) + (3^4 + 3^6) + ...+ (3^117 + 3^119)
= 1+ 3^2 + 3(1+ 3^2) + 3^4(1 + 3^2) ...+ 3^117( 1+ 3^2)
= (1 + 3^2) (1 + 3 + 3^4+ ...+ 3^117)
= 10 * (1 + 3 + 3^4+ ...+ 3^117) \(⋮\) 5
+) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ...+ (3^117 + 3^118 + 3^119)
= (1 + 3 + 3^2) + 3^3 (1+ 3 + 3^2) + ...+ 3^117 (1+ 3 + 3^2)
= (1 + 3 + 3^2) (1+ 3^3 +... + 3^117)
= 13 * (1+ 3^3 +... + 3^117) \(⋮\)13
a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=\frac{1}{2}.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
\(\frac{10}{22}\)
Đặt \(\dfrac{a}{b^2}=\dfrac{b^2}{c^3}=\dfrac{c^3}{a^4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=k.b^2\\b^2=k.c^3\\c^3=k.a^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k.k.c^3=k^2c^3\\c^3=k.a^4\end{matrix}\right.\)
\(\Rightarrow a=k^2.k.a^4\)
\(\Rightarrow a=k^3a^4\)
\(\Rightarrow\left(ka\right)^3=1\)
\(\Rightarrow ka=1\)
\(\Rightarrow a=\dfrac{1}{k}\) (1)
Thế vào \(c^3=k.a^4\Rightarrow c^3=k.\dfrac{1}{k^4}=\dfrac{1}{k^3}\)
\(\Rightarrow c=\dfrac{1}{k}\) (2)
Thế vào \(b^2=kc^3\Rightarrow b^2=k.\dfrac{1}{k^3}=\dfrac{1}{k^2}\)
\(\Rightarrow b=\dfrac{1}{k}\) hoặc \(b=-\dfrac{1}{k}\) (3)
(1);(2);(3) \(\Rightarrow\left[{}\begin{matrix}a=b=c\\a=c=-b\end{matrix}\right.\)
TH1: \(a=b=c\)
\(\Rightarrow P=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)
Th2: \(a=c=-b\)
\(\Rightarrow P=\left(1+\dfrac{-b}{b}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{-b}{-b}\right)=0.0.2=0\)
Bài 3
\(\dfrac{55}{23}+\dfrac{-22}{23}\le x\le\dfrac{1}{5}-\dfrac{-1}{6}+\dfrac{79}{30}\)
\(=\dfrac{33}{23}\)\(\le x\le\dfrac{90}{30}\)
\(=\dfrac{33}{23}\le x\le3\)
Mà \(x\in Z\) \(\Rightarrow\)\(x=2\)
Có 1 giá trị thỏa mãn
Chọn A
Bài 4
\(\dfrac{-11}{12}< \dfrac{5}{x}< \dfrac{-11}{15}\)
Chọn D
Bài 5
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(M=1-\dfrac{1}{100}\)
\(M=\dfrac{100}{100}-\dfrac{1}{100}\)
\(M=\dfrac{99}{100}\)
CHọn C
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
Bài 3 :
a) \(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...........+\dfrac{1}{2017.2019}\)
\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+.........+\dfrac{2}{2017.2019}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{2017}-\dfrac{1}{2019}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2019}\)
\(\Leftrightarrow2A=\dfrac{672}{2019}\)
\(\Leftrightarrow A=\dfrac{336}{2019}\)
b) \(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+.........+\dfrac{1}{132}\)
\(\Leftrightarrow B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+............+\dfrac{1}{11.12}\)
\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+......+\dfrac{1}{11}-\dfrac{1}{12}\)
\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{5}{12}\)
1.
Để \(\overline{25a89b}⋮2\Rightarrow b\in\left\{0;2;4;6;8\right\}\)
Để \(\overline{25a89b}\) chia 5 dư 3 \(\Rightarrow b\in\left\{3;8\right\}\)
Để thỏa mãn hai điều kiện trên thì \(b=8\)
Để \(\overline{25a898}⋮9\Rightarrow\left(2+5+a+8+9+8\right)⋮9\Leftrightarrow32+a⋮9\Rightarrow a=4\)
Vậy \(a=4;b=8\); số cần tìm là \(254898\)