K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Bài 3 :

a) \(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...........+\dfrac{1}{2017.2019}\)

\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+.........+\dfrac{2}{2017.2019}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{2017}-\dfrac{1}{2019}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2019}\)

\(\Leftrightarrow2A=\dfrac{672}{2019}\)

\(\Leftrightarrow A=\dfrac{336}{2019}\)

b) \(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+.........+\dfrac{1}{132}\)

\(\Leftrightarrow B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+............+\dfrac{1}{11.12}\)

\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+......+\dfrac{1}{11}-\dfrac{1}{12}\)

\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{5}{12}\)

8 tháng 8 2017

1.

Để \(\overline{25a89b}⋮2\Rightarrow b\in\left\{0;2;4;6;8\right\}\)

Để \(\overline{25a89b}\) chia 5 dư 3 \(\Rightarrow b\in\left\{3;8\right\}\)

Để thỏa mãn hai điều kiện trên thì \(b=8\)

Để \(\overline{25a898}⋮9\Rightarrow\left(2+5+a+8+9+8\right)⋮9\Leftrightarrow32+a⋮9\Rightarrow a=4\)

Vậy \(a=4;b=8\); số cần tìm là \(254898\)

9 tháng 8 2017

giúp mk đi m.n

9 tháng 8 2017

a) theo mk nghĩ là 396 lượt số

16 tháng 4 2022

a. x2=16.4

    x2=64

vì x<0 => x= -8

b: Tỉ số giữa 48 giờ và 3,2 giờ là:

48:3,2=15:1

c: \(\dfrac{-36}{7}\cdot\dfrac{2}{3}=\dfrac{-72}{21}=\dfrac{-24}{7}\)

13 tháng 6 2018

1/

a/ A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120

=> 3A - A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120 - (1 + 3 + 3^2 + 3^3 + ... + 3^119)

=> 2A = 3^120 - 1

=> A = (3 ^120 - 1)/2

b/ 2A + 1 = 27x

<=> 3^120 = 27x

<=> 27^40 = 27x

<=> x = 40

c/ +) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3^2) + (3 + 3^3) + (3^4 + 3^6) + ...+ (3^117 + 3^119)

= 1+ 3^2 + 3(1+ 3^2) + 3^4(1 + 3^2) ...+ 3^117( 1+ 3^2)

= (1 + 3^2) (1 + 3 + 3^4+ ...+ 3^117)

= 10 * (1 + 3 + 3^4+ ...+ 3^117) \(⋮\) 5

+) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ...+ (3^117 + 3^118 + 3^119)

= (1 + 3 + 3^2) + 3^3 (1+ 3 + 3^2) + ...+ 3^117 (1+ 3 + 3^2)

= (1 + 3 + 3^2) (1+ 3^3 +... + 3^117)

= 13 * (1+ 3^3 +... + 3^117) \(⋮\)13

13 tháng 6 2018

2b

Câu hỏi của Raf - Toán lớp 6 - Học toán với OnlineMath

Giải: 1) A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/2017.2019     A=1/2.(2/1.3+2/3.5+2.5.7+2/7.9+...+2/2017.2019)     A=1/2.(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/2017-1/2019)     A=1/2.(1/1-1/2019)     A=1/2.2018/2019     A=1009/2019 Chúc bạn học tốt!
30 tháng 7 2021

bn ơi viết đpá án hơi khó nhìn xíu nhalolang

16 tháng 2 2022

1100444-88888=

a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(=\frac{1}{2}.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{11}\right)\)

\(\frac{10}{22}\)

NV
16 tháng 1

Đặt \(\dfrac{a}{b^2}=\dfrac{b^2}{c^3}=\dfrac{c^3}{a^4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=k.b^2\\b^2=k.c^3\\c^3=k.a^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k.k.c^3=k^2c^3\\c^3=k.a^4\end{matrix}\right.\)

\(\Rightarrow a=k^2.k.a^4\)

\(\Rightarrow a=k^3a^4\)

\(\Rightarrow\left(ka\right)^3=1\)

\(\Rightarrow ka=1\)

\(\Rightarrow a=\dfrac{1}{k}\) (1)

Thế vào \(c^3=k.a^4\Rightarrow c^3=k.\dfrac{1}{k^4}=\dfrac{1}{k^3}\)

\(\Rightarrow c=\dfrac{1}{k}\) (2)

Thế vào \(b^2=kc^3\Rightarrow b^2=k.\dfrac{1}{k^3}=\dfrac{1}{k^2}\)

\(\Rightarrow b=\dfrac{1}{k}\) hoặc \(b=-\dfrac{1}{k}\) (3)

(1);(2);(3) \(\Rightarrow\left[{}\begin{matrix}a=b=c\\a=c=-b\end{matrix}\right.\)

TH1: \(a=b=c\)

\(\Rightarrow P=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)

Th2: \(a=c=-b\)

\(\Rightarrow P=\left(1+\dfrac{-b}{b}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{-b}{-b}\right)=0.0.2=0\)

16 tháng 3 2022

Bài 3

\(\dfrac{55}{23}+\dfrac{-22}{23}\le x\le\dfrac{1}{5}-\dfrac{-1}{6}+\dfrac{79}{30}\)

\(=\dfrac{33}{23}\)\(\le x\le\dfrac{90}{30}\)

\(=\dfrac{33}{23}\le x\le3\)

Mà \(x\in Z\) \(\Rightarrow\)\(x=2\)

Có 1 giá trị thỏa mãn 

Chọn A

Bài 4

\(\dfrac{-11}{12}< \dfrac{5}{x}< \dfrac{-11}{15}\)

Chọn D

Bài 5

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(M=1-\dfrac{1}{100}\)

\(M=\dfrac{100}{100}-\dfrac{1}{100}\)

\(M=\dfrac{99}{100}\)

CHọn C

16 tháng 3 2022

cảm ơn

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

27 tháng 3 2021

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0