Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}a\left(a+b+c\right)=12\\b\left(a+b+c\right)=18\\c\left(a+b+c\right)=30\end{matrix}\right.\)
\(\Rightarrow a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=12+18+30\)
\(\Rightarrow\left(a+b+c\right)\left(a+b+c\right)=60\)
\(\Rightarrow\left(a+b+c\right)^2=60\)
\(\Rightarrow a+b+c=\pm\sqrt{60}\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=\sqrt{60}:12=\dfrac{\sqrt{15}}{6}\\b=\sqrt{60}:18=\dfrac{\sqrt{15}}{9}\\c=\sqrt{60}:30=\dfrac{\sqrt{15}}{15}\end{matrix}\right.\\\left\{{}\begin{matrix}a=-\sqrt{60}:12=\dfrac{-\sqrt{15}}{6}\\b=-\sqrt{60}:18=\dfrac{-\sqrt{15}}{9}\\c=-\sqrt{60}:30=\dfrac{-\sqrt{15}}{15}\end{matrix}\right.\end{matrix}\right.\)
Các câu sau làm tương tự
b. \(ab=\dfrac{3}{5};bc=\dfrac{4}{5};ac=\dfrac{3}{4}\)
\(\Rightarrow ab\cdot bc\cdot ac=\dfrac{9}{25}\Rightarrow\left(abc\right)^2=\dfrac{9}{25}\Rightarrow abc=\pm\dfrac{3}{5}\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=\dfrac{3}{5}:bc=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\\b=\dfrac{3}{5}:ac=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\c=\dfrac{3}{5}:ab=\dfrac{3}{5}:\dfrac{3}{5}=1\end{matrix}\right.\\\left\{{}\begin{matrix}a=-\dfrac{3}{5}:\dfrac{4}{5}=-\dfrac{3}{4}\\b=-\dfrac{3}{5}:\dfrac{3}{4}=-\dfrac{4}{5}\\c=-\dfrac{3}{5}:\dfrac{3}{5}=-1\end{matrix}\right.\end{matrix}\right.\)
Vậy......................
1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)
=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
Bài 2. Ta có: (3x - 5)100 \(\ge\)0 \(\forall\)x
(2y + 1)100 \(\ge\)0 \(\forall\)y
=> (3x - 5)100 + (2y + 1)100 \(\ge\)0 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Vậy ...
Bài 2:\(A=\frac{n+1}{n-2009}=\frac{n-2009+2010}{n-2009}=\frac{n-2009}{n-2009}+\frac{2010}{n-2009}=1+\frac{2010}{n-2009}\)
Để A có giá trị lớn nhất \(1+\frac{2010}{n-2009}\)cũng có giá trị lớn nhất =>\(\frac{2010}{n-2009}\)cũng có giá trị lớn nhất => \(n-2009\inƯ\left(2010\right)\)
và \(n-2009\in N\left(n\in Z\right)\)và bé nhất (để\(\frac{2010}{n-2009}\)lớn nhất)
=>n - 2009 = 1 =>n = 2010
Thay n = 2010 vào \(1+\frac{2010}{n-2009}\)ta được: \(1+\frac{2010}{2010-2009}=1+2010=2011\)
Vậy giá trị lớn nhất của A là 2011 khi n=2010
Bài 1:\(A=\frac{5-2n}{n+3}=\frac{9-4+2n}{n+3}=\frac{9}{n+3}-\frac{4+2n}{n+3}=\frac{9}{n+3}-2\)
Để \(A\in N\)thì\(\frac{9}{n+3}-2\in N\Rightarrow\frac{9}{n+3}\in N\Rightarrow n+3\inƯ\left(9\right)\)
Ta có bảng sau:
n + 3 | 9 | -9 | 3 | -3 | 1 | -1 |
n | 6 | -12 | 0 | -6 | -2 | -4 |
1. \(\left\{{}\begin{matrix}a+495⋮a\\195-a⋮a\end{matrix}\right.\)
\(\Rightarrow\left(a+495\right)+\left(195-a\right)⋮a\)
\(\Leftrightarrow690⋮a\)
\(\Rightarrow a\in\left\{1,2,3,.....,345,690\right\}\)
Mà : \(a\) lớn nhất, \(a\in N\)
\(\Rightarrow a=690\)
Vậy : \(a=690\)
Câu 2 :