Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 523 và 6*522
523 = 5 * 522
Vì 5<6 suy ra 5 * 522 < 6 * 522 hay 523 < 6*522
Vậy: 523 < 6 * 522
b) 7 * 213 và 216
216 = 23 * 213 = 8 * 213
Vì 7 < 8 suy ra 7 * 213 < 8 * 213 hay 7 * 213 < 216
Vậy: 7 * 213 < 216
c) 2115 và 275 * 498
275 * 498 = [(3)3]5 * [(7)2]8 = 315 * 716 = 315 * 715 *7 = (3*7)15 *7 = 2115 * 7
Vì 2115 < 2115 * 7 suy ra 2115 < 275 * 498
Vậy: 2115 < 275 * 498
\(a;5^{23}=5\cdot5^{22}< 6\cdot5^{22}\Rightarrow5^{23}< 6\cdot5^{22}\)
\(b;7\cdot2^{13}< 8\cdot2^{13}=2^3\cdot2^{13}=2^{15}\)
\(c;21^{15}=3^{15}\cdot7^{15}>3^{15}\cdot7^{14}=27^5\cdot49^8\)
\(d;199^{20}< 200^{20}=10^{40}\cdot2^{20}< 10^{45}\cdot2^{15}=2000^{15}< 2001^{15}\)
\(e;3^{39}=9^{13}< 11^{13}< 11^{21}\)
a) Ta có: \(2^{13}< 2^{16}\)
Mà \(7.2^{13}\)
\(\Rightarrow7.2^{13}>2^{16}\)
b) Ta có: \(199^{20}=\left(199^4\right)^5\)
\(2003^{15}=\left(2003^3\right)^5\)
Vì \(199^4< 2003^3\)
Vậy \(199^{20}< 2003^{15}\)
c) Ta có: \(3^{39}=\left(3^{13}\right)^3\)
\(11^{21}=\left(11^7\right)^3\)
Vì \(3^{14}< 11^7\)
Vậy \(3^{39}< 11^{21}\)
a) b) c)
523=5.522 216=213.23=213.8 275.498=(33)5.(72)8=38.710
5.522<6.522 => 523<6.522 213.8>7.213 =>7.213<216 2115=(3.7)15=315.715 mà 315.715>38.710 nên 275.498> 2115
bạn vào câu hỏi tương tự , trong đó có đó , nhớ tick cho mình nha