K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

\(1,\frac{201}{205}=1-\frac{4}{205};\frac{2013}{2015}=1-\frac{2}{2015}=1-\frac{4}{4030}.Vì:205< 4030nen:\frac{4}{205}>\frac{4}{4030}\Rightarrow\frac{201}{205}< \frac{2013}{2015}\)

\(b,\frac{133}{135}=1-\frac{2}{135};\frac{1313}{1515}=\frac{13}{15}=1-\frac{2}{15}.Mà:15< 135nen:\frac{2}{135}< \frac{2}{15}\Rightarrow\frac{133}{135}>\frac{1313}{1515}\)

\(2,\frac{103}{105}=1-\frac{2}{105};\frac{205}{208}=1-\frac{2}{208}.\text{Dễ thấy: 105.1,5 bé hơn 208 nên:}\frac{103}{105}< \frac{205}{208}\)

\(b,tươngtựa\)

\(c,\frac{1111}{1212}=\frac{11}{12}=1-\frac{1}{12};\frac{141414}{151515}=\frac{14}{15}=1-\frac{1}{15}.Mà:12< 15nen:\frac{1111}{1212}< \frac{141414}{151515}\)

11 tháng 4 2015

Vì A > 1; B < 1 nên A > B.

22 tháng 5 2015

bao quynh Cao bạn ơi hình như bn làm sai đề ạ 7/4 mà sao lại 4/7 ạ

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

15 tháng 4 2019

a.Vì \(\frac{17}{19}< 1\) và \(\frac{19}{17}>1\)

nên \(\frac{17}{19}< 1< \frac{19}{17}\)

hay \(\frac{17}{19}< \frac{19}{17}\)

b) \(\frac{15}{7}=2\frac{1}{7}\) và \(\frac{25}{12}=2\frac{1}{12}\)

Vì \(2\frac{1}{7}>2\frac{1}{12}\) nên \(\frac{15}{7}>\frac{25}{12}\)

15 tháng 4 2019

\(A=\frac{54.107-53}{53.107+54}\)

\(\Leftrightarrow A=\frac{53.107+107-53}{53.107+54}\)

\(\Leftrightarrow A=\frac{53.107+54}{53.107+54}\)

\(\Leftrightarrow A=1\)

\(B=\frac{135.269-133}{134.269+135}\)

\(\Leftrightarrow B=\frac{134.269+269-133}{134.269+135}\)

\(\Leftrightarrow B=\frac{134.269+135}{134.269+135}\)

\(\Leftrightarrow B=1\)

Vì 1 = 1 nên A =B

5 tháng 3 2017

a)

\(\frac{64}{85}< \frac{64}{81}< \frac{73}{81}\)

=>\(\frac{64}{85}< \frac{73}{81}\)

b)

\(\frac{25}{26}=\frac{25.1010}{26.1010}=\frac{25250}{26260}\)

Ta có: \(1-\frac{25250}{26260}=\frac{1010}{26260}\)

         \(1-\frac{25251}{26261}=\frac{1010}{26261}\)

Vì \(\frac{1010}{26260}>\frac{1010}{26261}\) nên \(\frac{25}{26}< \frac{25251}{26261}\)

5 tháng 3 2017

a)\(\frac{64}{85}\)<\(\frac{64}{81}\)<\(\frac{73}{81}\)

b)\(\frac{25}{26}\)=\(\frac{25250}{26260}\)=\(1\)\(\frac{1010}{26260}\)\(1\)\(\frac{1010}{26261}\)\(\frac{25251}{26261}\)

15 tháng 3 2019

a) Ta có: \(\frac{2012}{2013}+\frac{1}{2013}=1\)

\(\frac{2013}{2014}+\frac{1}{2014}=1\)

\(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2012}{2013}< \frac{2013}{2014}\)

Vậy: \(\frac{2012}{2013}< \frac{2013}{2014}\)

b) \(\frac{1006}{1007}+\frac{1}{1007}=1\)

\(\frac{2013}{2015}+\frac{2}{2015}=1\)

\(\frac{1}{1007}=\frac{2}{2014}>\frac{2}{2015}\)

nên: \(\frac{1006}{1007}< \frac{2013}{2015}\)

Vậy:.......

6 tháng 3 2017

a) <

b) =

10 tháng 3 2017

bạn làm sai rồi cả 3 đều là dấu < hết

19 tháng 4 2019

A = 1/2.3/4.....2015/2016

= 1.3.5.....2015/2.4.6......2016

= 1.3.5.....2015/(1.2).(2.2).....(2.1008)

= 1.3.5.....2015/2^1008 . 1.2....1008

23 tháng 4 2018

Mấy bài dạng này biết cách làm là oke 

Ta có : 

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=2017\)

Vậy \(A=2017\)

Chúc bạn học tốt ~ 

23 tháng 4 2018

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=2017\)