K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

Hỏi đáp Toán

27 tháng 7 2016

Mình biết nhưng ý mình là mình đang học bài những hằng đẳng thức đáng nhớ , nếu như mà học bài đơn thức nhân đa thức thì mình biết làm rồi không cần hỏi . tại bài mình mới học chưa được hiểu cho lắm nên nhờ mấy bạn giúp mình làm 1 câu thôi ạ

26 tháng 7 2016

a) Mình không hiểu đề cho lắm bucminh

b) \(3x\left(x-1\right)^2-2x\left(x+3\right)\left(x-3\right)+4x\left(x-4\right)\)  

   \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x\left(x-4\right)\) 

   \(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)  

   \(=x^3-2x^2+5x\)  

c) \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)

   \(=2\left(2x+5\right)^2+3\left(4x+1\right)\left(4x-1\right)\)

    \(=2\left(4x^2+20x+25\right)+3\left(16x^2-1\right)\)

    \(=8x^2+40x+50+48x^2-3\)

    \(=56x^2+40x+47\)

d) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

   \(=x\left(x^2-16\right)-\left(x^4-1\right)\)

   \(=x^3-16x-x^4+1\)

e) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)

    \(=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)

    \(=y^4-81-y^4+4\)

    \(=-77\)

26 tháng 7 2016

Hỏi đáp Toán

1 tháng 8 2016

b) \(3x\left(x-1\right)^2-2x\left(x+3\right)\left(x-3\right)+4x\left(x-4\right)\)

\(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x^2-16x=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)\(=x^3-2x^2+5x\)

c) \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)=2\left(4x^2+20x+25\right)+3\left(16x^2-1\right)\)

\(=8x^2+40x+50+48x^2-3=56x^2+40x+47\)

d) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x\left(x^2-16\right)-x^4+1=x^3-x^4-16x+1\)

e) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)=\left(y^2-9\right)\left(y^2+9\right)-y^4+4=y^4-81-y^2+4=-77\)

31 tháng 7 2016

Khủng bố

1 tháng 10 2020

Bài 1 : 

Ta có : \(VP=\left(a+b\right)^4=\left(a+b\right)\left(a+b\right)^3\)

\(=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

=> HĐT ko đc CM 

Bài 2 : 

a, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)

\(=x^3+2x^2+4x-2x^2-4x-8-x+1+7=x^3-x=x\left(x^2-1\right)\)

Sửa đề : b, \(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=8\left(x^3-1\right)-8x^3+1=8x^3-8-8x^3+1=-7\)

1 tháng 10 2020

Xin phép chủ nahf cho mjnh sửa đề:D

\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

a,\(\left(a+b\right)^4\)

\(=\left[\left(a+b\right)^2\right]^2\)

\(=\left(a^2+2ab+b^2\right)^2\)

\(=\left[\left(a^2+2ab\right)+b^2\right]^2\)

\(=\left(a^2+2ab\right)^2+2\left(a^2+2ab\right)b^2+b^4\)

\(=a^4+4a^3b+4a^2b^2+2a^2b^2+4ab^3+b^4\)

\(=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

Bài 2:

a,\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)

\(=\left(x^3-8\right)-\left(x-1\right)+7\)

b,\(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x-1\right)\)

\(=8\left(x^3-1\right)-\left(8x^3-1\right)\)

\(=8x^3-8-8x^3+1\)

\(=-7\)

6 tháng 7 2016

a) \(3x^2-2x\left(5+1,5x\right)+10x\)

\(=3x^2-10x-3x^2+10x=0\)

b) \(7x\left(4y-x\right)+4y\left(y-7x\right)-2\left(2y^2-3,5x\right)\)

\(=28xy-7x^2+4y^2-28xy-4y^2+7x\)

\(=-7x^2+7x\)

14 tháng 6 2018

1,2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0

<=>(x2+y2+z2+2xy+2xz+2yz)+(x2+10x+25)+(y2+6y+9)=0

<=>(x+y+z)2+(x+5)2+(y+3)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Rightarrow}\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}}\)

2, A=2x2+4y2+4xy+2x+4y+9

=(x2+4xy+4y2)+(2x+4y)+x2+9

=[(x+2y)2+2(x+2y)+1]+x2+8

=(x+2y+1)2+x2+8

Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\\x^2\ge0\end{cases}}\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)

\(\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra khi x=0,y=-1/2

Vậy Amin = 8 khi x=0,y=-1/2

14 tháng 6 2018

Bài 1:

Ta có:\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì 3 vế trên đều dương ,nên ta có

\(\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}z=0-y-x\\x=-5\\y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}z=0+3+5=8\\x=-5\\y-3\end{cases}}}\)

Vậy ...........................................................................................................................

19 tháng 2 2020

\(1.a\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\\ =x^3+8y^3-\left(x^3-y^3\right)\\ =x^3+8y^3-x^3+y^3\\ =9y^3\)

19 tháng 2 2020

\(b.\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\\ = \left(x^2-1\right)\left(x-1\right)-x^3-8\\= x^3-x^2-x+1-x^3-8\\ =-x^2-x-7\)