Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2-1)(2+1)*...*(2^256+1)+1
=(2^2-1)(2^2+1)*...*(2^256+1)+1
=(2^4-1)(2^4+1)*...*(2^256+1)+1
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)*....*(2^256+1)+1
=(2^16-1)(2^16+1)*....*(2^256+1)+1
=(2^32-1)(2^32+1)*...*(2^256+1)+1
=(2^64-1)(2^64+1)(2^128+1)(2^256+1)+1
=(2^128-1)(2^128+1)(2^256+1)+1
=(2^256-1)(2^256+1)+1
=2^512
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
đặt A = (2 + 1)(22 + 1)...(2256 + 1).
khi đó (2 - 1)A = (2 -1)(2 + 1)(22 + 1)...(2256 + 1)
suy ra A = 2257 - 1 (dùng hiệu hai bình phương).
nên biểu thức đã cho là A + 1 = 2257.
1,
\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)
\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)
2.
\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
3.
Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)
4.
\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)
\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)
5.
\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)
\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)
a) Đề sai nha bạn :) mấy dấu cộng bạn phỉa chuyển thành dấu nhân nhé
\(A=\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)
\(A=2^{512}-1+1\)
\(A=2^{512}\)
b . ( 5x - 3y + 4z )( 5x - 3y - 4z ) = ( 5x - 3y )^2 - ( 4z )^2 = 25x^2 - 30xy + 9y^2 - 16z^2 = 25( y^2 + z^2 ) - 30xy + 9y^2 - 16z^2 = 9z^2 + 34y^2 - 30xy ( 1 )
( 3x - 5y )^2 = 9x^2 - 30xy + 25y^2 = 9( y^2 + z^2 ) - 30xy + 25y^2 = 34y^2 + 9z^2 - 30xy ( 2 )
Tu ( 1 ) va ( 2 ) => dpcm
A = ( 2 + 1 )( 22 + 1 )...( 2256 + 1 ) + 1
A = ( 2 - 1 )( 2 + 1 )( 22 + 1 )( 24 + 1 )...( 2256 + 1 ) + 1
A = ( 22 - 1 )( 22 + 1 )( 24 + 1 )...( 2256 + 1 ) + 1
A =( 24 - 1 ) ( 24 + 1 )...( 2256 + 1 ) + 1
A = ( 2256 - 1 )( 2256 + 1 ) + 1
A = 2512
\(A=\dfrac{-4}{9x^2-4}+\dfrac{2x+1}{3x-2}-\dfrac{1}{3x+2}\)
\(=\dfrac{-4+6x^2+4x+3x+2-3x+2}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{6x^2+4x}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{2x}{3x-2}\)
\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{256}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{256}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)....\left(2^{256}+1\right)\)
.........................................................
\(=\left(2^{256}-1\right)\left(2^{256}+1\right)\)
\(=\left[\left(2^{256}\right)^2-1^2\right]\)
\(=2^{512}-1\)