K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2016

ai giải giúp với nào

13 tháng 5 2020

a)Trên tia MA lấy điểm I sao cho MI=MC

Dễ thấy ΔCIMΔCIM đều ⇒MC=CI⇒MC=CI

Xét 2 tam giác ΔAICΔAICvàΔBMCvàΔBMC có

IC=MCIC=MC

∠IAC=∠MCB∠IAC=∠MCB (vì cùng cộng với ∠BCI=60∘∠BCI=60∘)

AC=BCAC=BC

Do đó ΔAICΔAIC = ΔBMCΔBMC

⇒AI=BM⇒AI=BM

⇒⇒ Đpcm

b) Dễ thấy ΔBAM∼ΔDCMΔBAM∼ΔDCM(g.g)

nên AMCM=BMDM⇒AM.DM=CM.BMAMCM=BMDM⇒AM.DM=CM.BM

⇒AMBM.CM=1MD⇒AMBM.CM=1MD

Áp dụng kết quả câu (a) ta có đpcm

c) Đặt MA=x, MB=y. Ta có

AM2+BM2+CM2=x2+y2+(x−y)2=2(x2+y2−xy)AM2+BM2+CM2=x2+y2+(x−y)2=2(x2+y2−xy) (1)

Kẻ BHBH vuông góc với AMAM

Do ∠BMH=60∘∠BMH=60∘ nên MH=y2,BH2=y2−(y2)2=3y24MH=y2,BH2=y2−(y2)2=3y24

do đó AB2=AH2+BH2=x2+y2−xyAB2=AH2+BH2=x2+y2−xy (2)

Từ (1) và (2) ⇒MA2+MB2+MC2=2AB2⇒MA2+MB2+MC2=2AB2 mà ΔABCΔABC đều 

nên AB=R√3

k cho mình nha!!

23 tháng 2 2020

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)

\(\Leftrightarrow\frac{1}{2}\ge\frac{2}{\sqrt{xy}}\Leftrightarrow\sqrt{xy}\ge4\)

P=\(\sqrt{x}+\sqrt{y}\) \(\Rightarrow\) \(P^2=\left(\sqrt{x}+\sqrt{y}\right)^2\ge4\sqrt{xy}\Leftrightarrow\ge4.4=16\)

\(\Rightarrow P\ge4\)

24 tháng 2 2020

bn ơi căn xy nó chỉ lớn hơn hoặc bằng 4 thôi chứ đâu có nghĩa là nó bằng 4 đâu bn???

15 tháng 5 2018

cvfbhm,

23 tháng 3 2021

Xin lỗi em ko biết làm , em vẫn chưa lên lớp 9

Bạn ghi lại công thức trong cái ô Σ đi bạn, khó nhìn quá

17 tháng 7 2021

[ 2 phần căn 3 + căn 2 phần 3 +2 phần căn 3 nhân căn 5 phần 12 -1 phần căn 16 ]chia 1 phần căn 3 

12 tháng 6 2017

thế nào nhỉ ( : 
Từ giả thiết => 1/x +1/y +1/z <= 1 
A/d  BĐT 1/(x +y+z) <= 1/9 ( 1/x + 1/y +1/z )  và 1/(x+y) <= 1/4 ( 1/x +1/y )
=> 1/(4x + y+z) = 1/(x+x + y+x + z+x) <= 1/9 ( 1/2x + 1/(y+x) + 1/(z+x) ) <= 1/9 ( 1/(2x)  + 1/4(1/y +1/x) + 1/4(1/x + 1/z)) 
Tương tự cộng lại và sử dụng 1/x +1/y +1/z <= 1
được P <= 1/6(1/x +1/y +1/z) <= 1/6 ĐPCM.

22 tháng 7 2021

Phương trình hoành độ giao điểm:

`(2m-1)x+m-1=x-3`

`<=>(2m-2)x+m+2=0`

`<=>x=-(m+2)/(2m-2)`

`d_1` giao `d_2` tại góc phần tư thứ 1 `<=> x=-(m+2)/(2m-2)>0 <=>-2<m<1`

Vậy `-2<m<1`.

28 tháng 2 2020

2. \(pt\Leftrightarrow\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\Rightarrow3x-5>0\Rightarrow x>\frac{5}{3}\)

+ \(pt\Leftrightarrow\left(\sqrt{x^2+12}-4\right)-\left(\sqrt{x^2+5}-3\right)-\left(3x-6\right)=0\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}-\frac{x^2-4}{\sqrt{x^2+5}+3}-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right)=0\) (1)

+ \(\forall x>\frac{5}{3}\) ta có: \(\left\{{}\begin{matrix}x+2>0\\\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\end{matrix}\right.\)

\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\) nên từ (1) suy ra:

\(x-2=0\Leftrightarrow x=2\) ( TM )