Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính:
a) \(3x^2\left(2x-1\right)\)
phân tích đa thức thành nhân tử:
a) \(5x^2-10x\)
b) \(4x^2-y^2-4x+1\)
a) \(=5x\left(x-2\right)\)
b) \(=\left(2x\right)^2-2x.2+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)
\(A=x^2+3x+2=\left(x+1\right)\left(x+2\right)\)
\(B=x^2-4x-5=\left(x-5\right)\left(x+1\right)\)
\(C=3x^2+7x+4=\left(x+1\right)\left(3x+4\right)\)
\(A=x^2+3x+2=\left(x+1\right)\left(x+2\right)\)
\(B=x^2-4x-5=\left(x-5\right)\left(x+1\right)\)
\(C=3x^2+7x+4=\left(x+1\right)\left(3x+4\right)\)
a.
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)
\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)
b.
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c.
\(=x^4-1+4x^2-4\)
\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) Ta có: \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
b) Ta có: \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c) Ta có: \(x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-3x+2y\right)\)
\(=0\cdot0\)
\(=0\)
d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)
\(=\left(3x-3y\right)^2-\left(2x+2y\right)^2\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)
\(=\left(x-5y\right)\left(5x-y\right)\)
e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)
\(=\left(2x-1\right)^2-\left(x+1\right)^2\)
\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)
\(=3x\left(x-2\right)\)
f) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
g) \(27x^3-0,001\)
\(=\left(3x\right)^3-\left(0,1\right)^3\)
\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)
h) \(125x^3-1\)
\(=\left(5x\right)^3-1^3\)
\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)
\(=\left(5x-5y\right)\left(x+y\right)\)
\(=5\left(x+y\right)\left(x-y\right)\)
a) $x^3-3x^2y+4x-12y$
$=(x^3-3x^2y)+(4x-12y)$
$=x^2(x-3y)+4(x-3y)$
$=(x-3y)(x^2+4)$
b) $4x^2-y^2+4y-4$
$=4x^2-(y^2-4y+4)$
$=(2x)^2-(y^2-2\cdot y\cdot2+2^2)$
$=(2x)^2-(y-2)^2$
$=[2x-(y-2)][2x+(y-2)]$
$=(2x-y+2)(2x+y-2)$
c) $9x^2-6x-y^2+2y$
$=(9x^2-y^2)-(6x-2y)$
$=[(3x)^2-y^2]-2(3x-y)$
$=(3x-y)(3x+y)-2(3x-y)$
$=(3x-y)(3x+y-2)$
$\text{#}Toru$
Lời giải:
a.
$x^2-7x+6=(x^2-x)-(6x-6)=x(x-1)-6(x-1)=(x-1)(x-6)$
b.
$x-3\sqrt{3}x-12\sqrt{3}$ không phân tích được thành nhân tử
c.
$x^2+4x-2$ không phân tích được thành nhân tử với các hệ số nguyên.
a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)
b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(1+x+2y\right)\)
b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
\(a,=\left(3x-5\right)\left(3x+3\right)=3\left(x+1\right)\left(3x-5\right)\\ b,=\left(5x-4-7x\right)\left(5x-4+7x\right)=\left(-2x-4\right)\left(12x-4\right)\\ =-8\left(x+2\right)\left(x-3\right)\\ c,=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\\ =\left(x+14\right)\left(3x-4\right)\\ d,=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\\ =\left(x+5\right)\left(5x-3\right)\\ e,=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\\ =\left(4x+7\right)\left(8x+11\right)\\ f,=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\\ =\left[a^2-\left(b-c\right)^2\right]\left[\left(b+c\right)^2-a^2\right]\\ =\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\\ g,=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\\ =\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)
\(h,=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\\ =\left[\left(a-b\right)^2-9\right]\left[\left(a+b\right)^2-1\right]\\ =\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
a: \(\left(3x-1\right)^2-16\)
\(=\left(3x-1-4\right)\left(3x-1+4\right)\)
\(=\left(3x+3\right)\left(3x-5\right)\)
\(=3\left(x+1\right)\left(3x-5\right)\)
b: \(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)
\(=\left(-2x-4\right)\left(12x-4\right)\)
\(=-8\left(x+2\right)\left(3x-1\right)\)