Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng đường AB dài 540 km
Nửa quãng đường AB là :
540:2= 270 ( km )
Gọi quãng đường ô tô và xe máy đã đi là s1 , s2
Trong cùng một thời gian thì quãng đường tỉ lệ thuận với vận tốc do đó
\(\frac{s_1}{v_1}\) = \(\frac{s_2}{v_2}\) = t ( t chính là thời gian cần tìm )
t= \(\frac{270-a}{65}\) = \(\frac{270-2a}{40}\)
t= \(\frac{540-2a}{130}\) = \(\frac{270-2a}{40}\) = \(\frac{\left(540-2a\right)-\left(270-2a\right)}{130-40}\) = \(\frac{270}{90}\) = 3
Vậy sau khi khởi hành 3 giờ thì ô tô cách M một khoảng bằng \(\frac{1}{2}\) khoảng cách từ xe máy đến M
Bài làm:
Gọi x là thời gian đi được đến khi ô tô cách điểm M (M là điểm chính giữa quãng đường AB) một khoảng bằng 1/2 khoảng cách từ xe máy đến M.
Ta có quãng đường ô tô đi được là 270 - 65x = 1/2 (270 - 40x)
Giải phương trình ta được x = 3.
Vậy sau 3 giờ thì ô tô cách điểm M (M là điểm chính giữa quãng đường AB) một khoảng bằng 1/2 , khoảng cách từ xe máy đến M.
nếu mk giải ra cho bn thì bn
kb với mk nha
chỉ 1 lần thôi
Quãng đường AB dài 540 km
Nửa quãng đường AB là :
540:2= 270 ( km )
Gọi quãng đường ô tô và xe máy đã đi là s1 , s2
Trong cùng một thời gian thì quãng đường tỉ lệ thuận với vận tốc do đó
\(\frac{s_1}{v_1}\) = \(\frac{s_2}{v_2}\) = t ( t chính là thời gian cần tìm )
t= \(\frac{270-a}{65}\) = \(\frac{270-2a}{40}\)
t= \(\frac{540-2a}{130}\) = \(\frac{270-2a}{40}\) = \(\frac{\left(540-2a\right)-\left(270-2a\right)}{130-40}\) = \(\frac{270}{90}\) = 3
Vậy sau khi khởi hành 3 giờ thì ô tô cách M một khoảng bằng \(\frac{1}{2}\) khoảng cách từ xe máy đến M
Gọi x là thời gian ô tô đi từ M đến khi ô tô cách M 1 khoảng =1/2 khoảng cách từ xe máy tới M..
Theo đề bài, ta có: 270 - 65x = 1/2 (270 - 40x)
270 - 65x = 135 - 20x
270 - 135 = 65x - 20x
135 = 45x
x = 135 : 45
x = 3 (giờ)
Vậy sau 3 giờ thì ô tô cách M 1 khoảng = 1/2 khoảng cách từ xe máy tới M
Bài 1:
Nửa quãng đường AB( hay M cách A, B) dài là:
540:2=270(km)
Gọi quãng đường ô tô và xe máy đã đi lần lượt là S1; S2 (km) và t (giờ) là thời gian cần tìm.
Trong cùng 1 thời gian đi thì quãng đường tỉ lệ thuận với vận tốc.
\(\Rightarrow\frac{S_1}{65}=\frac{S_2}{40}=t\)
Ta có:
\(S_1=\frac{1}{2}\cdot S_2\)
\(\Rightarrow t=\frac{270-a}{65}=\frac{540-2a}{130}=\frac{270-2a}{40}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(t=\frac{540-2a}{130}=\frac{270-2a}{40}=\frac{\left(540-2a\right)-\left(270-2a\right)}{130-40}=\frac{270}{90}=3\)
Vậy sau khi khởi hành 3 giờ thì ô tô cách M 1 khoảng bằng \(\frac{1}{2}\) khoảng cách từ xe máy đến M.
giỏi ghê ta