Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc lúc đi là \(x(km/h;x>0)\)
Vận tốc lúc về là \(x+9(km/h)\)
Thời gian đi là \(\dfrac{90}{x}(giờ)\)
Thời gian về là \(\dfrac{90}{x+9}(giờ)\)
Theo đề ta có \(\dfrac{90}{x}+\dfrac{90}{x+9}+\dfrac{1}{2}=5\)
\(\Rightarrow x=36\)
Vậy vận tốc xe máy lúc đi từ A đến B là \(36km/h\)
Gọi a(km/h) là vận tốc lúc đi của xe máy đi từ A đến B(Điều kiện: a>0)
Đổi \(30'=\dfrac{1}{2}h\)
Vận tốc lúc về của xe máy là: \(a+5\)(km/h)
Thời gian lúc đi là: \(\dfrac{180}{a}\)(h)
Thời gian lúc về là: \(\dfrac{180}{a+5}\)(h)
Theo đề bài, ta có: \(\dfrac{180}{a}-\dfrac{180}{a+5}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{180\left(a+5\right)}{a\left(a+5\right)}-\dfrac{180a}{a\left(a+5\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{180a+900-180a}{a\left(a+5\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{900}{a\left(a+5\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow a\left(a+5\right)=1800\)
\(\Leftrightarrow a^2+5a-1800=0\)
\(\Leftrightarrow a^2+2\cdot a\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{7225}{4}=0\)
\(\Leftrightarrow\left(a+\dfrac{5}{2}\right)^2=\dfrac{7225}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}a+\dfrac{5}{2}=\dfrac{85}{2}\\a+\dfrac{5}{2}=-\dfrac{85}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{80}{2}=40\left(nhận\right)\\a=-\dfrac{85}{2}-\dfrac{5}{2}=-45\left(loại\right)\end{matrix}\right.\)
Vậy: Vận tốc lúc đi là 40km/h
Đặt ẩn x là vận tốc xe máy (x>0)
Lúc đầu đi vs x km/h thì lúc sau là x+9 km/h
Thời gian đi từ A -> B là 90/x thì thời gian từ B -> A là 90/x+9
Đến B còn nghỉ 30p=1/2h
Lập hệ phương trình thời gian:
(90/x)+1/2+(90/x+9)=5
<=> (90/x)+(90/x+9)=5-1/2
<=> (90.(x+9)+90.x)/x.(x+9)=9/2
<=> 90.x+810+90.x=(9/2).x.(x+9)
<=>180.x+810=(9/2)x^2+(81/2).x
<=> 0 = (9/2).x^2 - (279/2).x - 810
Gpt đc x=36 hoặc x=-5( loại vì ko thỏa mãn điều kiện)
Gọi vận tốc lúc đi là x
=>V2=x+3
Theo đề, ta có: 30/x-30/x+3=1/2
=>(30x+90-30x)/(x^2+3x)=1/2
=>x^2+3x=180
=>x=12
=>V2=15km/h