Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
a) vẽ đường chéo AC .
xét ΔABC có :
AM=MB , BN=NC
=>MN//AC và MN=1/2AC (1)
xét ΔADC có:
AQ=QD , DP=PC
=>QP//AC và QP=1/2AC (2)
từ (1) và (2) =>MN=PQ , MN//PQ
=> MNPQ là HBH
b) Vì MNPQ là HBH . Vậy để MNPQ là HCN thì góc M phải =90o
để MNPQ là hình thoi thì MP phải vuông góc vs NQ
vì MNPQ là hình thoi . vậy để MNPQ là hình vuông thì MP=NQ
lười gõ =_=
link ây : https://olm.vn/hoi-dap/question/423397.html
tự làm nha
a) Tam giác ABC có :
MA = MB (gt)
NB = NC (gt)
nên MN là đường trung bình của tam giác, do đó MN // AC và MN = AC
Chứng minh tương tự : PQ // AC và PQ = AC
Suy ra MN // PQ và MN = PQ.
Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau => MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (1)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (2)
Từ (1) và (2) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi