\(\sqrt{x-m}\) - \(\sqrt..."> Học liệu Hỏi đáp Đăng nhập Đăng ký Học bài Hỏi bài Kiểm tra ĐGNL Thi đấu Bài viết Cuộc thi Tin tức Blog học tập Trợ giúp Về OLM OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay! Tham gia chương tình "Học kỳ rực rỡ" cùng OLM cơ hội nhận quà lên tới 2.000.000Đ Cơ hội nhận 15 ngày VIP dành cho thầy cô nhân dịp đầu năm Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ K Khách Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. Xác nhận câu hỏi phù hợp × Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip Tất cả Mới nhất Câu hỏi hay Chưa trả lời Câu hỏi vip LT Ly Trần 2 tháng 2 2020 1.Giải và biện luận bất phương trình: \(\sqrt{x-m}\) - \(\sqrt{x-2m}\) > \(\sqrt{x-3m}\) 2. Tìm m để bpt sau có nghiệm: x - m ≤ \(\sqrt{x+m}\) * Giúp mình ạ >< #Hỏi cộng đồng OLM #Toán lớp 10 2 NV Nguyễn Việt Lâm Giáo viên 7 tháng 2 2020 a/ \(\sqrt{x-m}>\sqrt{x-2m}+\sqrt{x-3m}\) \(\Leftrightarrow x-m>2x-5m+2\sqrt{\left(x-2m\right)\left(x-3m\right)}\) \(\Leftrightarrow4m-x>2\sqrt{\left(x-2m\right)\left(x-3m\right)}\) - Với \(m\le0\) BPT vô nghiệm - Với \(m>0\) \(\Rightarrow3m< x< 4m\) Bình phương 2 vế: \(x^2-8mx+16m^2>4\left(x^2-5mx+6m^2\right)\) \(\Leftrightarrow3x^2-12mx+8m^2< 0\) \(\Rightarrow\frac{6-2\sqrt{3}}{3}m< x< \frac{6+2\sqrt{3}}{3}m\) Kết hợp \(3m< x< 4m\Rightarrow3m< x< \frac{6-2\sqrt{3}}{3}m\) Đúng(0) NV Nguyễn Việt Lâm Giáo viên 7 tháng 2 2020 b/ Đặt \(\sqrt{x+m}=t\ge0\Rightarrow x=t^2-m\) BPT trở thành: \(t^2-2m\le t\Leftrightarrow t^2+t\le2m\) Ta thấy hàm số \(y=t^2+t\) đồng biến trên \([0;+\infty)\) do \(a=1\) dương và \(-\frac{b}{2a}=-\frac{1}{2}< 0\) \(\Rightarrow y\ge y\left(0\right)=0\) Vậy: - Với \(m< 0\) BPT vô nghiệm - Với \(m\ge0\) ta có nghiệm dương của pt \(t^2+t-2m=0\) là \(\frac{-1+\sqrt{8m+1}}{2}\) \(\Rightarrow\) Nghiệm của BPT là \(t\in\left[0;\frac{-1+\sqrt{8m+1}}{2}\right]\) hay \(x\in\left[-m;\frac{2m+1-\sqrt{8m+1}}{2}\right]\) với \(m\ge0\) Đúng(0) Xem thêm câu trả lời Các câu hỏi dưới đây có thể giống với câu hỏi trên BT Bình Trần Thị 17 tháng 1 2016 giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\))(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0 #Hỏi cộng đồng OLM #Toán lớp 10 0 BT Bình Trần Thị 15 tháng 1 2016 giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0 #Hỏi cộng đồng OLM #Toán lớp 10 1 DT Đỗ Thị Ngọc Trinh 16 tháng 1 2016 chtt Đúng(0) BT Bình Trần Thị 17 tháng 1 2016 giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0 #Hỏi cộng đồng OLM #Toán lớp 10 1 NN Ny Na Nguyen 11 tháng 6 2017 Câu này là C đúng hog Đúng(0) MY Mãi yêu mk A 27 tháng 2 2020 - olm Cho hệ bất phương trình \(\hept{\begin{cases}\frac{2x-17}{x-5}< 4\\\frac{x-2}{x-1}>2\end{cases}}\) có tập nghiệm \(\left(a;b\right)\).,Tìm m để bất phương trình \(m^2x+1\ge m+\left(3m-2\right)x\)có nghiệm đúng \(\forall x\in\left(a;b\right)\)Giải nhanh hộ mình với ạ #Hỏi cộng đồng OLM #Toán lớp 10 0 BT Bình Trần Thị 11 tháng 1 2016 giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0 #Hỏi cộng đồng OLM #Toán lớp 10 0 BT Bình Trần Thị 12 tháng 1 2016 giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0 #Hỏi cộng đồng OLM #Toán lớp 10 0 BT Bình Trần Thị 13 tháng 1 2016 giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x+2m-1}\) <= 0 #Hỏi cộng đồng OLM #Toán lớp 10 0 BT Bình Trần Thị 12 tháng 1 2016 giải và biện luận các hệ bất phương trình : a) (x - \(\sqrt{5}\) )( \(\sqrt{7}\) - 2x ) > 0 và x - m <= 0 ; b) \(\frac{2}{x-1}\) < \(\frac{5}{2x-1}\) và x - m >= 0 #Hỏi cộng đồng OLM #Toán lớp 10 0 BT Bình Trần Thị 15 tháng 1 2016 giải và biện luận các hệ bất phương trình : a) (x - \(\sqrt{5}\))( \(\sqrt{7}\) - 2x ) > 0 và x - m <= 0 ; b) \(\frac{2}{x-1}\) < \(\frac{5}{2x-1}\) và x - m >= 0 #Hỏi cộng đồng OLM #Toán lớp 10 1 DT Đỗ Thị Ngọc Trinh 16 tháng 1 2016 chtt Đúng(0) Bảng xếp hạng × Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Tuần Tháng Năm HN Ho nhu Y VIP 2 GP VD vu duc anh 0 GP HA Hải Anh ^_^ 0 GP TQ Trương Quang Đạt 0 GP TT Trần Thị Hồng Giang 0 GP NV Nguyễn Vũ Thu Hương 0 GP OT ♑ ঔღ❣ ๖ۣۜThư ღ❣ঔ ♑ 0 GP VT Vũ Thành Nam 0 GP AA admin (a@olm.vn) 0 GP CM Cao Minh Tâm 0 GP
OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
Tham gia chương tình "Học kỳ rực rỡ" cùng OLM cơ hội nhận quà lên tới 2.000.000Đ
Cơ hội nhận 15 ngày VIP dành cho thầy cô nhân dịp đầu năm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Giải và biện luận bất phương trình: \(\sqrt{x-m}\) - \(\sqrt{x-2m}\) > \(\sqrt{x-3m}\) 2. Tìm m để bpt sau có nghiệm: x - m ≤ \(\sqrt{x+m}\) * Giúp mình ạ ><
a/ \(\sqrt{x-m}>\sqrt{x-2m}+\sqrt{x-3m}\)
\(\Leftrightarrow x-m>2x-5m+2\sqrt{\left(x-2m\right)\left(x-3m\right)}\)
\(\Leftrightarrow4m-x>2\sqrt{\left(x-2m\right)\left(x-3m\right)}\)
- Với \(m\le0\) BPT vô nghiệm
- Với \(m>0\) \(\Rightarrow3m< x< 4m\)
Bình phương 2 vế:
\(x^2-8mx+16m^2>4\left(x^2-5mx+6m^2\right)\)
\(\Leftrightarrow3x^2-12mx+8m^2< 0\)
\(\Rightarrow\frac{6-2\sqrt{3}}{3}m< x< \frac{6+2\sqrt{3}}{3}m\)
Kết hợp \(3m< x< 4m\Rightarrow3m< x< \frac{6-2\sqrt{3}}{3}m\)
b/ Đặt \(\sqrt{x+m}=t\ge0\Rightarrow x=t^2-m\)
BPT trở thành: \(t^2-2m\le t\Leftrightarrow t^2+t\le2m\)
Ta thấy hàm số \(y=t^2+t\) đồng biến trên \([0;+\infty)\) do \(a=1\) dương và \(-\frac{b}{2a}=-\frac{1}{2}< 0\)
\(\Rightarrow y\ge y\left(0\right)=0\)
Vậy:
- Với \(m< 0\) BPT vô nghiệm
- Với \(m\ge0\) ta có nghiệm dương của pt \(t^2+t-2m=0\) là \(\frac{-1+\sqrt{8m+1}}{2}\)
\(\Rightarrow\) Nghiệm của BPT là \(t\in\left[0;\frac{-1+\sqrt{8m+1}}{2}\right]\) hay \(x\in\left[-m;\frac{2m+1-\sqrt{8m+1}}{2}\right]\) với \(m\ge0\)
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\))(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
chtt
Câu này là C đúng hog
Cho hệ bất phương trình \(\hept{\begin{cases}\frac{2x-17}{x-5}< 4\\\frac{x-2}{x-1}>2\end{cases}}\) có tập nghiệm \(\left(a;b\right)\).,Tìm m để bất phương trình \(m^2x+1\ge m+\left(3m-2\right)x\)có nghiệm đúng \(\forall x\in\left(a;b\right)\)Giải nhanh hộ mình với ạ
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x+2m-1}\) <= 0
giải và biện luận các hệ bất phương trình : a) (x - \(\sqrt{5}\) )( \(\sqrt{7}\) - 2x ) > 0 và x - m <= 0 ; b) \(\frac{2}{x-1}\) < \(\frac{5}{2x-1}\) và x - m >= 0
giải và biện luận các hệ bất phương trình : a) (x - \(\sqrt{5}\))( \(\sqrt{7}\) - 2x ) > 0 và x - m <= 0 ; b) \(\frac{2}{x-1}\) < \(\frac{5}{2x-1}\) và x - m >= 0
a/ \(\sqrt{x-m}>\sqrt{x-2m}+\sqrt{x-3m}\)
\(\Leftrightarrow x-m>2x-5m+2\sqrt{\left(x-2m\right)\left(x-3m\right)}\)
\(\Leftrightarrow4m-x>2\sqrt{\left(x-2m\right)\left(x-3m\right)}\)
- Với \(m\le0\) BPT vô nghiệm
- Với \(m>0\) \(\Rightarrow3m< x< 4m\)
Bình phương 2 vế:
\(x^2-8mx+16m^2>4\left(x^2-5mx+6m^2\right)\)
\(\Leftrightarrow3x^2-12mx+8m^2< 0\)
\(\Rightarrow\frac{6-2\sqrt{3}}{3}m< x< \frac{6+2\sqrt{3}}{3}m\)
Kết hợp \(3m< x< 4m\Rightarrow3m< x< \frac{6-2\sqrt{3}}{3}m\)
b/ Đặt \(\sqrt{x+m}=t\ge0\Rightarrow x=t^2-m\)
BPT trở thành: \(t^2-2m\le t\Leftrightarrow t^2+t\le2m\)
Ta thấy hàm số \(y=t^2+t\) đồng biến trên \([0;+\infty)\) do \(a=1\) dương và \(-\frac{b}{2a}=-\frac{1}{2}< 0\)
\(\Rightarrow y\ge y\left(0\right)=0\)
Vậy:
- Với \(m< 0\) BPT vô nghiệm
- Với \(m\ge0\) ta có nghiệm dương của pt \(t^2+t-2m=0\) là \(\frac{-1+\sqrt{8m+1}}{2}\)
\(\Rightarrow\) Nghiệm của BPT là \(t\in\left[0;\frac{-1+\sqrt{8m+1}}{2}\right]\) hay \(x\in\left[-m;\frac{2m+1-\sqrt{8m+1}}{2}\right]\) với \(m\ge0\)