Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
\(a,ĐK:1\le x\le3\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)
\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)
theo mình thì giải thế này
đặt \(x+1=a\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{a+1}=\sqrt[3]{2x^2}+\sqrt[3]{2x^2+1}\)
xét hàm suy ra \(f\left(a\right)=f\left(2x\right)\)
hay 2x = a hay x+1 = 2x suy ra x=1
vậy S = (1)
thiếu nghiệm
\(2x^2=a\Leftrightarrow2x^2-x-1=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-\frac{1}{2}\end{matrix}\right.\)
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt[3]{x+6}-2+\sqrt{x-1}-1=x^2-4\)
\(\Leftrightarrow\dfrac{x-2}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4}+\dfrac{x-2}{\sqrt[]{x-1}+1}=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{1}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4}+\dfrac{1}{\sqrt[]{x-1}+1}=x+2\left(1\right)\end{matrix}\right.\)
Xét (1), do \(x\ge1\Rightarrow\left\{{}\begin{matrix}x+2\ge3\\\dfrac{1}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4}+\dfrac{1}{\sqrt[]{x-1}+1}< \dfrac{1}{4}+\dfrac{1}{1}< 3\\\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô nghiệm hay pt có nghiệm duy nhất \(x=2\)
ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ge0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge1\\x\ge3\end{matrix}\right.\)
=> \(x\ge3\)
Ta có : \(2\sqrt{x-1}+3\sqrt{x-3}=\sqrt{x^2-4x+3}+6\)
=> \(2\sqrt{x-1}+3\sqrt{x-3}=\sqrt{\left(x-3\right)\left(x-1\right)}+6\)
Đặt \(\sqrt{x-1}=a,\sqrt{x-3}=b\) ta được phương trình :
\(2a+3b=ab+6\)
=> \(2a+3b-ab-6=0\)
=> \(a\left(2-b\right)=6-3b\)
=> \(a=\frac{6-3b}{2-b}=\frac{3\left(2-b\right)}{2-b}=3\)
Thay \(a=\sqrt{x-1}\) vào phương trình trên ta được :
\(\sqrt{x-1}=3\)
=> \(\left(\sqrt{x-1}\right)^2=3^2\)
=> \(\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=10\left(TM\right)\\x=-8\left(KTM\right)\end{matrix}\right.\)
=> \(x=10\)
Vậy phương trình có nghiệm là x = 10 .
\(\Leftrightarrow3+2\sqrt{x\left(1-x\right)}=\sqrt{x}+\sqrt{1-x}\)
Đặt \(a=\sqrt{x}\) \(b=\sqrt{1-x}\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-2ab=3\\a^2+b^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b-2ab=3\\\left(a+b\right)^2-2ab=1\end{matrix}\right.\)
Đến đây tự làm nha