Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-6}{8}=\frac{3y+15}{9}=\frac{4z-16}{20}\)
\(=\frac{2x+3y-4z-6+15+16}{-3}=-\frac{100}{3}\)
Làm nốt
2
\(\left|x-2\right|\ge0\) dấu "=" xảy ra tại x=2
\(\left(x-y\right)^2\ge0\) dấu "=" xảy ra tại x=y
\(3\sqrt{z^2+9}\ge3\sqrt{9}=9\) dấu "=" xảy ra tại z=0
\(\Rightarrow C\ge0+0+9+16=25\) dấu "=" xảy ra tại x=y=2;z=0
5
Chứng minh \(1< M< 2\) là OK
B=(4x-9)/(3x+y)-(4y+9)/(3y+x)
= [4x-(x-y)]/(3x+y) - [4y+(x-y)]/(3y+x)
= (4x-x+y)/(3x+y) - (4y+x-y)/(3y+x)
= (3x+y)/(3x+y) - (3y+x)/(3y+x)
= 1 - 1 = 0
x - y = 9 => x = 9 + y thay vào B ta được :
\(B=\frac{4\left(9+y\right)-9}{3\left(9+y\right)+y}-\frac{4y+9}{3y+9+y}=\frac{36+4y-9}{27+3y+y}-\frac{4y+9}{4y+9}=\frac{27+4y}{27+4y}-\frac{4y+9}{4y+9}=1-1=0\)
Vậy B = 0
1. Để \(A_{min}\)thì \(x^4_{min}\)và \(2.x^2_{min}\) => \(x_{min}\) => \(x=0\)
Thay x vào ta có:\(A_{min}=0^4+2.0^2-7\)
\(A_{min}=0+0-7\)
\(A_{min}=-7\)
2. Ta có điểm M(1;5) => y=5;x=1
Thay x=1;y=5 vào ta có: \(5=a.1\)
=> a=5
4. Ta có: \(\frac{4x-9}{3x+y}-\frac{4y+9}{3y+x}=\frac{4x-\left(x-y\right)}{3x+y}-\frac{4y+\left(x-y\right)}{3y+x}\)
\(=\frac{4x-x+y}{3x+y}-\frac{4y+x-y}{3y+x}\)
\(=\frac{3x+y}{3x+y}-\frac{3y+x}{3y+x}\)
\(=1-1\)
\(=0\)
ban co bi gi ko lam thi phai cho mot it $ chu neu ko con lau ma lam cho