Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}...\frac{100}{99}\)
\(1\frac{1}{3}\times1\frac{1}{8}\times1\frac{1}{15}\times1\frac{1}{24}\times...\times1\frac{1}{99}\)
\(=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times\frac{25}{24}\times...\times\frac{100}{99}\)
\(=\frac{2\times2}{1\times3}\times\frac{3\times3}{2\times4}\times\frac{4\times4}{3\times5}\times\frac{5\times5}{4\times6}\times...\times\frac{10\times10}{9\times11}\)
\(=\frac{2}{1}\times\frac{10}{11}\)
\(=\frac{20}{11}\)
\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)
Vậy \(A=\frac{1}{20}\)
\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)
\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)
Vậy \(B=1004\)
DẤU CHẤM LÀ DẤU NHÂN
a,
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)
b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)
= \(\frac{11}{10}\cdot\frac{12}{11}\cdot\frac{13}{12}\cdot\frac{14}{13}\cdot\frac{15}{14}\cdot\frac{16}{15}\cdot\frac{17}{16}\)
=11/10 x 12/11 x 13/12 x 14/13 x 15/14 x 16/15 x 17/16
= \(\frac{17}{10}\)
=\(\frac{11}{10}\)x \(\frac{12}{11}\)x .......... x \(\frac{16}{15}\)x\(\frac{17}{16}\)
= \(\frac{11^1x12^1x......x16^1x17}{10x11^1x...x15^1x16^1}\)( những số có số nhỏ ở trên là rút gọn với số khác VD:11 rút gọn cho 11 )
=\(\frac{1x1x......x1x17}{10x1x.......x1x1}\)
=\(\frac{17}{10}\)
= 1,7
\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}......1\frac{1}{1963}\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{1964}{1963}\)
\(=\frac{3.4.5....1964}{2.3.4....1963}\)
\(=\frac{1964}{2}=982\)
\(1\frac{1}{2}\)x\(1\frac{1}{3}\)x\(1\frac{1}{4}\)x.....x\(1\frac{1}{1963}\)
=\(\frac{3}{2}\)x\(\frac{4}{3}\)x\(\frac{5}{4}\)x.....x\(\frac{1964}{1963}\)
=\(1964:2\frac{1}{1}\)
=983
#)Giải :
\(1\frac{1}{3}\times1\frac{1}{8}\times1\frac{1}{15}\times...\times1\frac{1}{9800}\)
\(=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times...\times\frac{9801}{9800}\)
\(=\frac{2.2}{1.3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{99.99}{98.100}\)
\(=\frac{2.3.4.....99}{1.2.3.....98}\times\frac{2.3.4.....99}{3.4.5.....100}\)
\(=99\times\frac{2}{100}=\frac{198}{100}=\frac{99}{50}\)
\(=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times...\times\frac{9801}{9800}\)
\(=\frac{2.2}{1.3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{99.99}{98.100}\)
\(=\frac{2.3.4.5.....99}{1.2.3.4....98}\times\frac{2.3.4.5.....99}{3.4.5.6.....100}\)
\(=\frac{99}{1}\times\frac{2}{100}\)
\(=\frac{99}{50}\)