Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách làm chi tiết bài số 7 nhá.ta dự đoán(theo kinh nghiệm khi giải mấy bài cơ bản kiểu này) là khi người 2 bốc bao nhiêu thì người 1 bốc x- số người 2 vừa bốc.làm thế thì CHO DÙ NGƯỜI 2 BỐC BAO NHIÊU THÌ TỔNG 1 LƯỢT VẪN LÀ X.vì vậy chúng ta sẽ đưa người 2 vào vòng lặp này bằng lần bốc đầu và chiến thắng bằng lần x cuối cùng.vì bốc từ 11-20 nên ta phải chọn x(ta có thể chọn x) sao cho người 2 bốc bao nhiêu ta vx bốc đc x- số đó.vì vậy x phải là 11+20=31.vì vậy lượt đầu ta bốc 5 viên.còn lại ng 2 bốc bao nhiêu thì ta bốc 31- bấy nhiêu thì ta thắng vì 2015 chia hết cho 31
bài số 8 nhé.ko thể.bàn cờ mất 2 ô ở 2 góc chéo nên ko mất tính tổng quát giả sử mất 2 ô màu trắng.nhận xét cho dù có xếp 1x2 như thế nào thì cx che hết 1 ô đen và 1 ô trắng.vì vậy để che hết bàn cờ chứng tỏ nếu che 32 ô đen(toàn bộ ô đen trên bàn cờ) thì cx PHẢI che mất 32 ô trắng.nhưng thực tế có 30 ô trắng vì vậy ko thể.
hình như 1 số bài thiếu thông tin???
a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)
Cho x = 0 => y = 2 được D(0; 2)
Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)
Nối A, D ta được đồ thị của (1).
- Vẽ đồ thị hàm số y = 5 – 2x (2)
Cho x = 0 => y = 5 được E(0; 5)
Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)
Nối B, E ta được đồ thị của (2).
b) Ở câu a) ta tính được tọa độ của hai điểm A và B là A(-4 ; 0) và B (2,5 ; 0)
Hoành độ giao điểm C của hai đồ thị (1) và (2) là nghiệm của phương trình:
0,5 x + 2 = 5 - 2x
⇔ 0,5x + 2x = 5 – 2
⇔ 2,5.x = 3 ⇔ x = 1,2
⇒ y = 0,5.1,2 + 2 = 2, 6
Vậy tọa độ điểm C(1,2; 2,6).
c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)
Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)
Ta có: AH = AO + OH = 4 + 1,2 = 5,2
BH = BO – OH = 2,5 – 1,2 = 1,3
CH = 2,6
d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.
Ta có: tgα = 0,5 => α = 26o34'
Gọi β là góc hợp bởi đường thẳng y = 5 - 2x với tia Ox
Tam giác OEB vuông tại O nên:
a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)
\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)
Có \(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)
\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)
- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .
<=> \(\Delta>0\)
\(\Leftrightarrow\left(m-4\right)^2>0\)
\(\Leftrightarrow m\ne4\)
Vậy ...
b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv
a) Phương trình hoành độ giao điểm là:
\(x^2=\left(m-2\right)x-m+3\)
\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)
\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)
Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow m^2-8m+16>0\)
\(\Leftrightarrow\left(m-4\right)^2>0\)
mà \(\left(m-4\right)^2\ge0\forall m\)
nên \(m-4\ne0\)
hay \(m\ne4\)
Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt