Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cos2x+5=2.(2−cosx)(sinx−cosx)cos2x+5=2.(2−cosx)(sinx−cosx)
⇔2.cos2x−1+5=2.(2.sinx−2.cosx−cosx.sinx+cos2x)⇔2.cos2x−1+5=2.(2.sinx−2.cosx−cosx.sinx+cos2x)
⇔cos2x+2=2.sinx−2.cosx−cosx.sinx+cos2x⇔cos2x+2=2.sinx−2.cosx−cosx.sinx+cos2x
⇔2.(sinx−cosx)−cosx.sinx=2⇔2.(sinx−cosx)−cosx.sinx=2
Đặt t=sinx−cosxt=sinx−cosx , khi đó ta có t2−12=(−cosx.sinx)t2−12=(−cosx.sinx)
pt ⇔2.t+t2−12=2⇔2.t+t2−12=2
ta có \(3^{x^2}\ge1\) với mọi x
mà \(-1\le cos2x\le1\) với mọi x
dấu = xảy ra khi \(3^{x^2}=1\Rightarrow x=0\)
ta có x=0 thì cos2x=1
vậy nghiệm cuả pt x=0
a) x + 2/5 = 8/5
x= 8/5 - 2/5
x= 6/5
vay x =6/5
b)x/9=2/3
x=2.9:3=6
vay x=6
x
a, ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{x^2-1}-\dfrac{2x}{x^2-1}=0\)
\(\Rightarrow x^2+x-2x=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=1\left(KTMĐK\right)\end{matrix}\right.\)
Vậy...........
b, ĐKXĐ: \(x\ne0\) ; \(x\ne2\)
\(\Leftrightarrow\dfrac{x^2-4}{x\left(x-2\right)}-\dfrac{2x+13}{x\left(x-2\right)}=0\)
\(\Rightarrow x^2-4-2x-13=0\)
\(\Leftrightarrow x^2-2x-17=0\)
\(\Leftrightarrow\left(x-1\right)^2-16=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\left(TMĐK\right)}}\)
Vậy.............
mk làm hơi tắt nha bn
\(\leftrightarrow2cos^2x+sinx=cosx+1\)
\(\leftrightarrow cos^2x-cosx-sin^2x+sinx=0\)
\(\leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)-\left(cosx-sinx\right)=0\)
\(\leftrightarrow\left(cosx-sinx\right).\left(cosx+sinx-1\right)=0\)
\(cosx-sinx=0\leftrightarrow x=\frac{\pi}{4}+k\pi\left(k\epsilon Z\right)\)
\(cosx+sinx=1\leftrightarrow Sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\leftrightarrow x=k2\pi hoacx=\frac{\pi}{2}+k2\pi\)