Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề xem chứ mình thay \(n=3,4,5,6\) đều không thỏa.
Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)
b) Chứng minh rằng nếu (5n + 1) là số chẵn thì n là số lẻ.
Giải: Nếu 5n + 1 là số chẵn thì =>
5n + 1 có dạng 2k (k là số tự nhiên)
=> 5n + 1 = 2k
=> 5n = 2k - 1
Do 2k - 1 là số lẻ => 5n là số lẻ (1)
Nếu n là số chẵn thì 5n chẵn =>
=> n phải là số lẻ
Xét n = 3p => A = 3p(6p+7)(21p+1) chia hết cho 3 vì 3p chia hết cho 3.
p chẵn => 3p chia hết cho 6 => A chia hết cho 6
p lẻ => 21p lẻ => 21p + 1 chẵn => A chia hết cho 6
Xét n = 3p+1 => A = (3p+1)(6p+9)(21n+8) chia hết cho 3 vì 6p + 9 chia hết cho 3.
p chẵn => 21n+8 chẵn=> A chia hết cho 6.
p lẻ => 3p+1 chẵn => A chia hết cho 6.
Xét n = 3p+2 => A= (3p+2)(6p+11)(21n+15) chia hết cho 3 vì 21n+15 chia hết cho 3.
p chẵn => 3p + 2 chia hết cho 2 => A chia hết cho 6.
p lẻ => 21p lẻ => 21p + 15 chẵn => A chia hết cho 6.
Vậy A luôn luôn chia hết cho 6.
Do a gồm 31 chữ số 1 nên tổng các chữ số của a là :
31.1=31 chia 3 dư 1
Do b gồm 38 chữ số 1 nên tổng các chữ số của b là :
38.1=38 chia 3 dư 2
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3
⇔ a chia 3 dư 1; b chia 3 dư 2
⇔ ab chia 3 dư 2
⇔ ab - 2 chia hết cho 3
Vậy .............
Do a gồm 31 chữ số 1 nên tổng các chữ số của a là :
\(31.1=31\) chia 3 dư 1
Do b gồm 38 chữ số 1 nên tổng các chữ số của b là :
\(38.1=38\) chia 3 dư 2
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3
\(\Leftrightarrow\) a chia 3 dư 1; b chia 3 dư 2
\(\Leftrightarrow\) ab chia 3 dư 2
\(\Leftrightarrow\) ab - 2 chia hết cho 3
\(\Leftrightarrowđpcm\)
Vì số a gồm 31 chữ số 1 nên tổng các chữ số của a là 31
Mà 31 chia 3 dư 1
=> a chia 3 dư 1
=> a = 3m + 1
Vì số b gồm 38 chữ số 1 nên tổng các chữ số của a là 38
Mà 38 chia 3 dư 2
=> b chia 3 dư 2
=> b = 3n + 2
Khi đó:
ab - 2 = ( 3m + 1)( 3n + 2 ) = 9mn + 6m + 3n + 2 - 2 = 9mn + 6m + 3n
Ta thấy:
9mn \(⋮\) 3
6m \(⋮\) 3
3n \(⋮\) 3
=> 9mn + 6m + 3n \(⋮\) 3
hay ab - 2 chia hết cho 3
dề sai roi
đáng lẽ phải chia hết cho 33 chứ