Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
ĐK \(\hept{\begin{cases}x\ge0\\x\ne4;x\ne9\end{cases}}\)
a. P=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right):\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2+\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2+x-9-x+4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}+2}=\frac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
b. Với \(x=4-2\sqrt{3}\Rightarrow P=\frac{\sqrt{4-2\sqrt{3}}+1}{4-2\sqrt{3}-4}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{-2\sqrt{3}}\)
\(=\frac{\sqrt{3}-1+1}{-2\sqrt{3}}=-\frac{1}{2}\)
c. Để \(\frac{1}{P}\le\frac{-5}{2}\Leftrightarrow\frac{x-4}{\sqrt{x}+1}+\frac{5}{2}\le0\Leftrightarrow\frac{2x-8+5\sqrt{x}+5}{2\left(\sqrt{x}+1\right)}\le0\)
\(\Leftrightarrow\frac{2x+5\sqrt{x}-3}{2\left(\sqrt{x}+1\right)}\le0\Leftrightarrow2x+5\sqrt{x}-3\le0\)vì \(2\left(\sqrt{x}+1\right)\ge0\forall x\ge0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\le0\Leftrightarrow2\sqrt{x}-1\le0\Leftrightarrow0\le x\le\frac{1}{4}\left(tm\right)\)
Vậy với \(0\le x\le\frac{1}{4}\)thì \(\frac{1}{P}\le-\frac{5}{2}\)
d. Ta có \(B=P\left(\sqrt{x}-2\right)=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}=1-\frac{1}{\sqrt{x}+2}\)
Gỉa sử \(B\in Z\Leftrightarrow\sqrt{x}+2\inƯ\left(1\right)\Leftrightarrow\sqrt{x}+2\in\left\{-1;1\right\}\Leftrightarrow x\in\left\{\phi\right\}\)
Vậy B không nhận giá trị nguyên với mọi x để P có nghĩa
\(\text{Em mới học lớp 7 hà chị}\)
em cx xl năm nay e lên lớp 6 chị ạ