\(S=1+3^1+3^2+......+3^{20}\)
   S có là số chính phương hay khôn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

o tổng $S=1+3^1+3^2+3^3+...........+3^{30}.$

S là số chính phương hay không ?

Bạn vào câu hỏi tương tự nha

5 tháng 10 2017

Ta có: 31 = ...3

32 = ..9

33 = ..7

34 = ...1

35 = ...3

Vậy chu kì chữ số tận cùng của lũy thừa 3 có 4 số là 3,9,7,1.

Mà 20 : 4 = 5 ( không dư)

=> Chữ số tận cùng của 31 + 32 + ... + 320 là chữ số 1.

Mà trong tổng các số hạng của S còn có thêm chữ số 1 => Chữ số tận cùng của S = 2.

Mà không có số nào mà căn bậc hai có chữ số tận cùng là 2 nên S không phải là số chính phương.

5 tháng 10 2017

S = 1 + 3 + 32 + 3+...+ 320

3S= 3.(1+3+32+33+....320)

3S= 3+32+33+...+320+ 321

3S-S=321-1

2S=321-1

S=321- 1 / 2

321 chia cho 2 nhưng vẫn giữ nguyên s như thế nhé mk viết ra cho bạn hiểu thoi

8 tháng 7 2015

\(S=1+3+3^2+3^3+...+3^{30}\Rightarrow3S=3+3^2+3^3+...+3^{31}\Rightarrow3S-S=3^{31}-1=3^{4.7+3}-1=\left(3^4\right)^7.27-1=\left(...1\right).27-1=\left(...27\right)-1=\left(...26\right)\)=> Chữ số tận cùng của S là 26: 2 = 13

b/

Vì scp ko có t/c là 3 => S ko là scp

16 tháng 5 2019

Địt thối lồn con mọe tui mày

a, 100=102=> là số chính phương

b,100=102=> là số chính phương

c,169=132=> là số chính phương

d, 117 không phải số chính phương

e,68 không phải số chính phương

mình làm đúng 100%

nha

a, 100=102=> là số chính phương

b,100=102=> là số chính phương

c,169=132=> là số chính phương

d, 117 không phải số chính phương

e,68 không phải số chính phương

mik làm đúng, nha

13 tháng 8 2017

ko .vì khi 330 chia nhỏ thành 33 thì chữ số tận cùng của nó là 7.vậy số tận cùng của 330 là số 7 nhưng số chính phương ko có chữ số tận cùng nào bằng 7 nên số tận cùng của Sko phải là số chính phương

28 tháng 3 2020

I DON'T MATHS!! OK!!!

¯\_(ツ)_/¯

( ͡° ͜ʖ ͡°)

ಠ_ಠ

(▀̿Ĺ̯▀̿ ̿)

21 tháng 10 2015

Bài 1: P là lẻ, vì nếu P chẵn thì P = 2 => P + 4 = 6 là hợp số.

*) P = 3 => P + 4 = 7; P + 20 = 23 => hợp lí.

*) P > 3 => P phải là số không chia hết cho 3 vì nếu nó chia hết cho 3 thì không phải là hợp số (ngoài số 3) 

=> P = 3k + 1 hoặc 3k + 2

+) Với P = 3k + 1 => P + 20 = 3k + 21 chia hết cho 3 => loại

+) Với P = 3k + 2 ==> P + 4 = 3k + 6 chia hết cho 3 => loại

Vậy P chỉ có thể = 3

Bài 2: S = 30 + 31 + 32 + ... + 3123

S = (30 + 31 + 32 + 33) + ... + (3120 + 3121 + 3122 + 3123)

S = 30(1 + 31 + 32 + 33) + ... + 3120.( 1 + 31 + 32 + 33)

S = 30.40 + ... + 3120.40

S = 40.(30 + ... + 3120) = 4.10.40.(30 + ... + 3120

Vì tích chứa 10 => S chia hết cho 10.

21 tháng 10 2015

S = 1 + 3 + 32 + ... + 3123

S = ( 1 + 3 + 32 + 3) + ( 34 + 35 + 36 + 37 ) + ... + ( 3120 + 3121 + 3122 + 3123 )

S = 1.40 + 34(1+3+32+33) + ... + 3120.(1+3+32+33)

S = 1.40 + 34.40 + ... + 3120.40

S = 4.10.(1+34+...+3120) chia hết cho 10