K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(BC^2=10^2-6^2=64\)

=>\(BC=\sqrt{64}=8\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{6}=\dfrac{CD}{10}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{5}\)

mà BD+CD=BC=8cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{BD+CD}{3+5}=\dfrac{8}{8}=1\)

=>\(BD=3\cdot1=3\left(cm\right);CD=5\cdot1=5\left(cm\right)\)

24 tháng 4 2016

Mk mới lớp 7 thui T_T

24 tháng 4 2016

mình mới có hc lớp 6 à hihi!!!!!

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuong tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: Xét ΔABI và ΔCBD có 

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{BAI}=\widehat{BCD}\)

Do đó: ΔABI\(\sim\)ΔCBD