K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

Đề hình như sai nhé bạn. Đường thẳng qua C thì làm sao song song với CK được.

7 tháng 8 2020

câu 1 bị sai ở chỗ đường thẳng C thì làm sao có thể song song với CK được 

A B C D I R H K J M N O

Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB

Ta có \(DH.DA=DB.DC\)(1)

Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)

Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên

\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)

\(\Rightarrow AK.HD=AD.HK\)

\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)

\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)

\(\Leftrightarrow2.AD.DH=2.DK.DJ\)

\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)

Từ (1) và (2) ta  có\(DK.DJ=DH.DA\)

=> K là trực tâm của tam giác IBC

5 tháng 11 2023

\({}\)

a) Vì \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BEFC nội tiếp đường tròn đường kính BC. Tương tự như thế, tứ giác AEDB nội tiếp đường tròn đường kính AB. Cũng có \(\widehat{AEH}=\widehat{AFH}=90^o\) nên tứ giác AEHF nội tiếp đường tròn đường kính AH.

Ta có \(\widehat{IEM}=\widehat{IEB}+\widehat{BEM}\) 

\(=\left(90^o-\widehat{IEA}\right)+\widehat{EBC}\)

\(=90^o-\widehat{EAD}+\widehat{EBD}=90^o\) (do \(\widehat{EBD}=\widehat{EAD}\))

Vậy \(IE\perp ME\)

b) Dễ thấy các điểm I, D, E, F, M, K cùng thuộc đường tròn đường kính IM. Gọi J là trung điểm AI thì I chính là tâm của đường tròn (AIK) nên (J) tiếp xúc với (I) tại A. Dẫn đến A nằm trên trục đẳng phương của (I) và (J)

 Mặt khác, ta có \(SK.SI=SE.SF\) nên \(P_{S/\left(I\right)}=P_{S/\left(J\right)}\) hay S nằm trên trục đẳng phương của (I) và (J). Suy ra AS là trục đẳng phương của (I) và (J). \(\Rightarrow\)\(AS\perp IJ\) hay AS//BC (đpcm).

c) Ta thấy tứ giác AKEP nội tiếp đường tròn AP

\(\Rightarrow\widehat{APB}=\widehat{MKE}=\widehat{MDE}=\widehat{BAC}\)

\(\Rightarrow\Delta BAE~\Delta BPA\left(g.g\right)\Rightarrow\widehat{BAP}=\widehat{BEA}=90^o\)

\(\Rightarrow\) AP//QH \(\left(\perp AB\right)\)

\(\Rightarrow\widehat{IAP}=\widehat{IHQ}\) (2 góc so le trong)

Từ đó dễ dàng chứng minh \(\Delta IAP=\Delta IHQ\left(g.c.g\right)\) \(\Rightarrow IP=IQ\) hay I là trung điểm PQ (đpcm)

2: Xét ΔCAD và ΔCEA có

góc C chung

góc CAD=góc CEA

=>ΔCAD đồng dạng với ΔCEA

=>CA/CE=CD/CA

=>CA^2=CE*CD

30 tháng 3 2022
Ai giúp em với😢

a) Ta có: BHCD là hình bình hành(gt)

nên CH//BD và BH//CD

mà CH\(\perp\)AB(gt) và BH\(\perp\)AC(gt)

nên BD\(\perp\)AB và CD\(\perp\)AC

Suy ra: B,C nằm trên đường tròn đường kính AD(1)

Ta có: MD//BC(gt)

AM\(\perp\)BC(gt)

Do đó: MD\(\perp\)AM(Định lí 1 từ vuông góc tới song song)

hay M nằm trên đường tròn đường kính AD(2)

Từ (1) và (2) suy ra A,B,C,D,M cùng thuộc 1 đường tròn(Đpcm)

28 tháng 6 2021

b) Vì BMCD nội tiếp (chứng minh ở câu a) và \(MD\parallel BC\) (đề cho)

\(\Rightarrow BMDC\) là hình thang cân \(\Rightarrow BM=CD\)

c) Vì BHCD là hình bình hành có K là trung điểm BC 

\(\Rightarrow\) K là trung điểm HD 

Xét \(\Delta ADH\) có O là trung điểm AD (đường kính), K là trung điểm HD

\(\Rightarrow OK\) là đường trung bình \(\Rightarrow OK\parallel AH\) và \(OK=\dfrac{1}{2}AH\)

Vì \(OK\parallel AH\) \(\Rightarrow\dfrac{AH}{OK}=\dfrac{AG}{GK}=2\Rightarrow AG=2GK\Rightarrow\dfrac{AG}{AK}=\dfrac{2}{3}\)

\(\Rightarrow G\) là trọng tâm tam giác ABC

10 tháng 9 2021

thôi k cần đâu làm đc r