Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
a) Ta có: p, p + 4 là số nguyên tố (p > 3, p \(\inℕ^∗\))
=> p có dạng 3k + 1 hoặc 3k + 2 (p không thể có dạng 3k vì p > 3)
Xét p có dạng 3k + 2:
=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3.2 = 3.(k + 2) là hợp số (vô lý vì p + 4 là số nguyên tố)
Vậy p có dạng 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3k + 3.3 = 3.(k + 3) là hợp số
Vậy p + 8 là hợp số
b) Gọi số cần tìm là a (a \(\inℕ^∗\))
Theo đề bài: a chia 17 dư 8, a chia 25 dư 9, a có 3 chữ số và a nhỏ nhất
=> a - 8 \(⋮\)17 và a - 9 \(⋮\)25
=> a - 8 + 17 \(⋮\)17 và a - 9 + 25 \(⋮\)25
=> a + 9 \(⋮\)17; 25
=> a + 9 \(\in\)BC (17; 25)
Vì ƯCLN (17; 25) = 1
Nên BCNN (17; 25) = 17.25 = 425
=> BC (17; 25) = B (425) = {0; 425; 850;...}
Mà a là số có 3 chữ số và a nhỏ nhất
Nên a + 9 = 425
=> a = 416
Vậy số cần tìm là 416
2, TA có:
x + y + xy = 40
=> x(y + 1) + y + 1 = 41
=> (x + 1)(y + 1) = 41
=> x + 1 thuộc Ư(41) = {1; 41}
Xét từng trường hợp rồi thay vào tìm y
Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...
_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_
ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do