K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

Bài 1:

A B C D O M N P Q

a) Xét tam giác AOD có M là trung điểm của AO (gt) Q là trung điểm của OD (gt)

\(\Rightarrow MQ//AD,MQ=\frac{1}{2}AD\left(tc\right)\left(1\right)\)

CMTT \(MN//AB,MN=\frac{1}{2}AB\left(2\right)\)

\(NP=\frac{1}{2}BC\left(3\right)\)

\(PQ=\frac{1}{2}DC\left(4\right)\)

Mà AB=BC=CD=DA (tc) (5)

Từ (1) ,(2) ,(3),(4) và (5)\(\Rightarrow MN=NP=PQ=MQ\)

Xét tứ giác MNPQ có \(MN=NP=PQ=MQ\left(gt\right)\)

\(\Rightarrow MNPQ\)là hình thoi ( dhnb)  (6)

Ta có: \(\hept{\begin{cases}MQ//AD\left(cmt\right)\\MN//AB\left(cmt\right)\end{cases}}\)mà \(AD\perp AB\)

\(\Rightarrow MQ\perp MN\)

\(\Rightarrow\widehat{QMN}=90^0\)(7) 

Từ (6) và (7) \(\Rightarrow MNPQ\)là hình vuông (dhnb )

b) Ta có\(MQ=\frac{1}{2}AD\left(cmt\right)\)

mà \(AD=16\left(cm\right)\)

\(\Rightarrow MQ=8\left(cm\right)\)

\(\Rightarrow S_{MNPQ}=8^2=64\left(cm^2\right)\)

\(\Rightarrow S_{ABCD}=16^2=256\left(cm^2\right)\)

Vậy diện tích phần trong của hình vuông ABCD nằm ngoài tứ giác MNPQ =\(256-64=192\left(cm^2\right)\)

10 tháng 3 2020

A B D C O K H

Kẻ \(BH\perp AD,CK\perp AD\)

\(\Rightarrow BH//CK\)

Ta có: \(\hept{\begin{cases}BH//CK\\BC//HK\end{cases}\Rightarrow BH=CK}\)( tc cặp đoạn chắn )

Xét tam giác ABD và tam giác ACD có:

2 đường cao BH,CK = nhau , đáy AD chung

\(\Rightarrow S_{ABD}=S_{ACD}\)

\(\Leftrightarrow S_{OAB}+S_{AOD}=S_{AOD}+S_{OCD}\)

\(\Leftrightarrow S_{OAB}=S_{OCD}\left(đpcm\right)\)

PS: có 1 tính chất học ở kì I lớp 8 á nhưng mình không biết cách giải thích sao nữa nên mình dùng cặp đoạn chắn

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có 

Q là trung điểm của AD(gt)

P là trung điểm của CD(gt)

Do đó: QP là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có 

MN//PQ(cmt)

MN=PQ(cmt)

Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b)

Xét ΔABD có 

M là trung điểm của AB(gt)

Q là trung điểm của AD(gt)

Do đó: MQ là đường trung bình của ΔADB(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Hình bình hành MNPQ trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MQP}=90^0\\MQ=QP\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB\perp CD\\AB=CD\end{matrix}\right.\)

Hình bình hành MNPQ trở thành hình vuông khi 

3 tháng 1 2017

bik lm câu a,b r mak ko bik lm câu c 

chỉ câu c với

4 tháng 1 2017

mình chịu

31 tháng 5 2018

A B C N Q D P

31 tháng 5 2018

Giúp mk giải câu c) với >< Mình đang cần gấp!!!