K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

mình vừa kiểm tra phần này lun nè

22 tháng 11 2019

Giúp mình với 

1: Tọa độ A là:

y=0 và 4x+m-3=0

=>x=(-m+3)/4 và y=0

=>OA=|m-3|/4

Tọa độ B là:

x=0 và y=m-3

=>OB=|m-3|

Theo đề, ta có: 1/2*(m-3)^2/4=9

=>(m-3)^2/4=18

=>(m-3)^2=72

=>\(m=\pm6\sqrt{2}+3\)

2:

PTHĐGĐ là:

x^2-4x-m+3=0

Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4

Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0

=>m>-1

(4-x1)(x2-1)=2

=>4x2-4-x1x2+1=2

=>x2(x1+x2)-3-(-m+3)=2

=>x2*4-3+m-3=2

=>x2*4=2-m+6=8-m

=>x2=2-1/2m

=>x1=4-2+1/2m=1/2m+2

x1*x2=-m+3

=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2

=>-m+3-4+1/4m^2=0

=>1/4m^2-m-1=0

=>m^2-4m-4=0

=>\(m=2\pm2\sqrt{2}\)

25 tháng 2 2022

Gọi tọa độ A ; B lần lượt là A(x1 ; 0) ; B(0 ; y1

Vì B thuộc (d) => y1 = (m - 1).0 + 3 = 3 

Ta có khoảng cách từ O đến (d) = \(\frac{3}{\sqrt{5}}\)

=> PT : \(\left(\frac{1}{\left|x_1\right|}\right)^2+\left(\frac{1}{\left|y_1\right|}\right)^2=\left(\frac{1}{\frac{3}{\sqrt{5}}}\right)^2\)

\(\Leftrightarrow\frac{1}{x_1^2}+\frac{1}{y_1^2}=\frac{5}{9}\)

\(\Leftrightarrow\frac{1}{x_1^2}+\frac{1}{9}=\frac{5}{9}\Leftrightarrow\frac{1}{x_1^2}=\frac{4}{9}\Leftrightarrow x_1=\frac{3}{2}\)

Với x1 = 3/2 ; y1 = 9 => 9 = (m - 1).1,5 + 3 <=> m = 5

Vậy m = 5 thì khoảng cách từ O đến (d) là \(\frac{3}{\sqrt{5}}\)

17 tháng 11 2018

Gợi ý :

a) y = 2 => x = 2 hoặc -2 ( do có thể < 0 hay > 0 )

b) S(OAB) = 1 => |x| = 1 => x = 1 hoặc -1

c) Gọi khoảng cách từ O tới (d) là OH

OH bé hơn hoặc bằng khoảng cách 2 của O tới điểm cố định trên Oy

=> max = 2 khi d song^2 Ox => x = 0 => đúng mọi m

d)  Thay vào biểu thức hệ thức lượng => khoảng cách từ O tới điểm mà d cắt trên Ox là 0 => d trùng Oy

e) thay x vào có kết quả

f) cắt tại điểm > 2 => biểu thức biểu diễn x > 2 ( -2/(m+3)   )

15 tháng 11 2020

Phương trình hoành độ giao điểm của (P) và (d):

x2 + 2x -m2 + 1 = 0 

Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0

Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)\(\in\varnothing\)

24 tháng 5 2022

Phương trình hoành độ của (d) và (P) : 

\(x^2=\left(2m-1\right)x+4\left(1\right)\)

\(\Leftrightarrow x^2-\left(2m-1\right)x-4=0\)

\(\Delta=\left(2m-1\right)^2+16>0\) ⇒ Phương trình có hai nghiệm phân biệt với mọi m.

- A và B cách Oy nên \(x_A,x_B\) trái dấu ⇒ \(x_Ax_B< 0\Leftrightarrow P=\dfrac{c}{a}=-4< 0\)

⇒ Để thỏa đề bài, \(x_A+x_B=0\).

Theo định lí Vi-ét

 \(x_A+x_B=-\dfrac{b}{a}=2m-1=0\)

\(\Leftrightarrow m=\dfrac{1}{2}\)

Vậy : (d) cắt (P) tại 2 điểm phân biệt với khoảng cách từ A và B đến trục Oy bằng nhau khi \(m=\dfrac{1}{2}\)