Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
Ta có :(a+b-c)2 \(\ge\) 0
<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)
<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)
<=>bc+ac-ab \(\le\frac{5}{6}< 1\)
<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)
Câu 1:
\(\sqrt{a}+\sqrt{b}=1\Leftrightarrow a+b+2\sqrt{ab}=1\Leftrightarrow a+b=1-2\sqrt{ab}\)
BĐT cần chứng minh tương đương:
\(ab\left(1-2\sqrt{ab}\right)^2\le\frac{1}{64}\Leftrightarrow\sqrt{ab}\left(1-2\sqrt{ab}\right)\le\frac{1}{8}\)
Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\) ta có:
\(\frac{1}{2}.2\sqrt{ab}\left(1-2\sqrt{ab}\right)\le\frac{1}{2}\frac{\left(2\sqrt{ab}+1-2\sqrt{ab}\right)^2}{4}=\frac{1}{8}\) (đpcm)
Dấu "=" xảy ra khi \(2\sqrt{ab}=1-2\sqrt{ab}\Rightarrow ab=\frac{1}{16}\Rightarrow a=b=\frac{1}{4}\)
Câu 2:
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=1\)
\(Q=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2-2xy\)
\(Q=2\left[\left(x+y\right)^2-3xy\right]+4-2xy\)
\(Q=2\left(4-3xy\right)+4-2xy\)
\(Q=12-8xy\ge12-8=4\)
\(\Rightarrow Q_{min}=4\) khi \(x=y=1\)