Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
O B y A M N
Xét hai tam giác vuông MOA và MOB (90 độ)
OA=OB (gt)
OM cạnh huyền trung
Do đó tam giác MAO =Tam giác MBO (cạnh huyền)
=>AOM=BOM
A và B thay đổi OA và OB luôn bằng nhau nên tam giác MAO và MOB có góc AC và AB
Vậy A trên hình ko thay đổi nên đường thẳng nằm bên trái
~Study well~ :)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vẽ CQ vuông góc đường thẳng OA tại Q.
mà OB vuông góc OA (vì góc xOy vuông)
\(\Rightarrow OB\) song song CQ
\(\Delta ACQ\)có B là trung điểm AC
OB song song CQ (cmt)
\(\Rightarrow\)O là trung điểm AQ hay Q đối xứng A qua O
* VẬY bất kỳ vị trí của điểm B trên tia Ox thì điểm C luôn di chuyển trên đường thẳng đối xứng với A qua O và vuông góc với OA
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét hai tam giác vuông MOA và MOB:
\(\widehat{MAO}=\widehat{MBO}=90^0\)
OA = OB (gt)
OM cạnh huyền chung
Do đó: ∆ MAO = ∆ MBO (cạnh huyền, cạnh góc vuông)
⇒\(\widehat{AOM}=\widehat{BOM}\)
A và B thay đổi, OA và OB luôn bằng nhau nên ∆ MAO và ∆ MBO luôn luôn bằng nhau do đó \(\widehat{AOM}=\widehat{BOM}\)
Vậy khi A chuyển động trên Ox, B chuyển động trên Oy mà OA = OB thì điểm M chuyển động trên tia phân giác của góc xOy.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét hai tam giác vuông MOA và MOB: ∠ (MAO) = ∠ (MBO) = 90 0
OA = OB (gt)
OM cạnh huyền chung
Do đó: ∆ MAO = ∆ MBO (cạnh huyền, cạnh góc vuông)
⇒ ∠ (AOM) = ∠ (BOM)
A và B thay đổi, OA và OB luôn bằng nhau nên ∆ MAO và ∆ MBO luôn luôn bằng nhau do đó ∠ (AOM) = ∠ (BOM)
Vậy khi A chuyển động trên Ox, B chuyển động trên Oy mà OA = OB thì điểm M chuyển động trên tia phân giác của góc xOy.