K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
3 tháng 3 2019

-Bạn ơi mik sẽ giải còn hình bạn tự vẽ nha!

a,Xét tam giác ADB và tam giác ACE có

AD=AC(gt)

góc DAB=góc CAE( cùng phụ vs góc BAC)

AB=AE(gt)

Suy ra tam giác ADB=tam giác ACE(c.g.c)

suy ra BD=CE(hai cạnh tương ứng)

b,Xét tam giác ABM và tam giác NCM có

AM=NM(gt)

góc AMB=góc NMC(hai góc đối đỉnh)

BM=MC(gt)

suy ra tam giác ABM=tam giác NCM(c.g.c)

suy ra AB=NC(hai cạnh tương ứng) mà AB=AE suy ra NC=AE

Xét tam giác ADE và tam giác CAN có

NC=AE(cmt)

góc DAE=góc ACN

AD=AC(gt)

suy ra tam giác ADE=tam giác CAN(c.g.c)

c, Do tam giác ADE=tam giác CAN(câu b) nên góc ADE=góc CAN( hai góc tương ứng)

suy ra góc DAI+góc ADE=90

suy ra tam giác AID vuông tại I

áp dụng định lí Pytago, ta có:

AD^2-DI^2=AI^2

Do góc AID=90 nên góc AIE=180-90=90(kề bù với góc AID)

suy ra tam giác AIE vuông tại I

Áp dụng định lí Pytago, ta có:

AE^2-IE^2=AI^2

suy ra AD^2-DI^2=AE^2-IE^2

hay AD^2+IE^2=AE^2+DI^2

suy ra đccm

4 tháng 3 2019

Thanks bạn nha!!!

1 tháng 1 2016

ko giai dc nhieu qua voi lại mk ko gioi hih

11 tháng 5 2019

a) xét tam giác AMH và tam giác NMB có:

          AM=MN(gt)

        \(\widehat{AMH}\)=\(\widehat{NMB}\)(vì đối đỉnh)

        BM=MH(gt)

=> tam giác AMH=tam giác NMB(c.g.c)

=> \(\widehat{NBM}\)=\(\widehat{AHM}\)mà góc AHM=90 độ => \(\widehat{NBM}\)=90 độ

=> NB\(\perp\)BC

b) vì tam giác AMH=tam giác NMB(câu a)=> AH=NB(2 cạnh tương ứng)

trong tam giác AHB có: AB>AH(vì cạnh huyền lớn hơn cạnh góc vuông)

mà AH=NB(cmt) => NB<AB

c) vì theo câu b ta có NB<AB => \(\widehat{BNA}\)>\(\widehat{BAN}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)

mà \(\widehat{BNA}\)=\(\widehat{MAH}\)(theo câu a) => \(\widehat{BAM}\)\(\widehat{MAH}\)

d) 

A B C H M N I