K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2022

\(1,\)

\(p_{\Delta DEF}=\dfrac{12+20+16}{2}=24\left(cm\right)\)

\(\Rightarrow S_{\Delta DEF}=\sqrt{24\left(24-16\right)\left(24-20\right)\left(24-12\right)}=96\left(cm^2\right)\)

\(S=\dfrac{EF.DF.DE}{4R}\Leftrightarrow R=\dfrac{EF.DF.DE}{4S}=\dfrac{12.20.16}{4.96}=10\left(cm\right)\)

\(2,\)

Gọi tọa độ \(\left(d\right)\) giao với trục tung là \(\left(0;y\right)\)

Thay điểm \(\left(0;y\right)\) vào \(\left(d\right):y=3x-\dfrac{1}{2}\)

\(y=3.0-\dfrac{1}{2}=-\dfrac{1}{2}\)

\(\Rightarrow\) Chọn đáp án \(A\)

30 tháng 5 2017

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

Bài 1: 

a: \(=\dfrac{1}{mn^2}\cdot\dfrac{n^2\cdot\left(-m\right)}{\sqrt{5}}=\dfrac{-\sqrt{5}}{5}\)

b: \(=\dfrac{m^2}{\left|2m-3\right|}=\dfrac{m^2}{3-2m}\)

c: \(=\left(\sqrt{a}+1\right):\dfrac{\left(a-1\right)^2}{\left(1-\sqrt{a}\right)}=\dfrac{-\left(a-1\right)}{\left(a-1\right)^2}=\dfrac{-1}{a-1}\)

16 tháng 6 2017

a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)

b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(\sqrt{x}=a,\sqrt{y}=b\)

Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)

\(\Rightarrow B=x+\sqrt{xy}+y\)

Vậy...

c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)

d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)

16 tháng 6 2017

a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)

= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)

=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)

= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)

b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)

=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )

= (x+\(\sqrt{xy}\)+y)

c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)

Tương tự câu a

d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)

tương tự câu a

e:2x +√1−6x+9x23x−1

= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)

= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)

=2x+\(\dfrac{3x-1}{3x-1}\)

=2x+1

Bài 2: 

a: \(A=\left|5x+1\right|-\dfrac{3}{8}>=-\dfrac{3}{8}\)

Dấu '=' xảy ra khi x=-1/5

b: \(B=\left|-\dfrac{1}{6}x+2\right|+0.25>=0.25\)

Dấu '=' xảy ra khi x=12

Bài 3: 

a: \(A=2018-\left|x+2019\right|< =2018\)

Dấu '=' xảy ra khi x=-2019

b: \(=-10-\left|2x-\dfrac{1}{1009}\right|< =-10\)

Dấu '=' xảy ra khi x=1/2018

Tìm GTNN của: a. \(A=x-\sqrt{x}\) b. \(B=x-\sqrt{x-2005}\) c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\) d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\) e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\) f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\) g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\) h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\) i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\) k. \(K=x+y\) biết x và y là các số dương thỏa mãn...
Đọc tiếp

Tìm GTNN của:

a. \(A=x-\sqrt{x}\)

b. \(B=x-\sqrt{x-2005}\)

c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\)

f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)

g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\)

h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\)

i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)

k. \(K=x+y\) biết x và y là các số dương thỏa mãn \(\dfrac{a}{x}+\dfrac{b}{y}=1\)(a và b là các hằng số dương )

l. \(L=\left(x+y\right)\left(y+z\right)\) với các số dương x,y,z và \(xyz\left(x+y+z\right)=1\)

m. \(M=x^4+y^4+z^4\) biết rằng \(xy+yz+zx=1\)

n. \(N=a^3+b^3+c^3\) biết a,b,c lớn hơn -1 và \(a^2+b^2+c^2=12\)

o. \(O=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1

p. \(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x+y+z=1\)

q. \(Q=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x^2+y^2+z^2=1\)

r. \(R=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) với a,b,c là các số dương và \(a+b+c=6\)

s. \(S=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\) với a,b,c là các số dương và \(a+b+c=1\)

t. \(T=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\) với a,b,c,d là các số dương và \(a+b+c+d=1\)

u. \(U=\dfrac{x^2+y^2}{x-y}\) với x>y>0 và xy=1

v. \(V=\dfrac{5-3x}{\sqrt{1-x^2}}\)

w. \(W=\dfrac{1}{x}+\dfrac{1}{y}\) với x>0, y>0 và \(x^2+y^2=1\)

x. \(X=\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) với x>0, y>0 và \(x^2+y^2=1\)

y. \(Y=\dfrac{2}{2-x}+\dfrac{1}{x}\) với 0<x<2

z. \(Z=3^x+3^y\) với x+y=4

0
7 tháng 12 2017

Bài 1:

dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .

Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)

Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)

\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)

P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf

7 tháng 12 2017

Làm sao có thể dự đoán được dấu "=" trong bài này vậy ạ ?

a: \(=\dfrac{\sqrt{m}\left(m+4n-4\sqrt{mn}\right)}{\sqrt{mn}\left(\sqrt{m}-2\sqrt{n}\right)}\)

\(=\dfrac{1}{\sqrt{n}}\cdot\left(\sqrt{m}-2\sqrt{n}\right)\)

b: \(=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

c: \(=\sqrt{5^2\cdot2\cdot x^2y^4\cdot xy}-\dfrac{2y^2}{x^2}\cdot4\sqrt{2}\cdot x^3\sqrt{xy}+\dfrac{3}{2}xy\cdot\sqrt{2}\cdot y\cdot\sqrt{xy}\)

\(=5xy^2\sqrt{2xy}-8\sqrt{2xy}xy^2+\dfrac{3}{2}xy^2\cdot\sqrt{2xy}\)

\(=-\dfrac{3}{2}\sqrt{2xy}\)

d: \(=\left(x+2\right)\cdot\dfrac{\sqrt{2x-3}}{\sqrt{x+2}}=\sqrt{\left(2x-3\right)\left(x+2\right)}\)

19 tháng 7 2018

a, Vì trong dấu căn là số âm nên biểu thức này vô nghĩa. b)\(\sqrt{\dfrac{1}{200}}=\dfrac{1}{\sqrt{200}}=\dfrac{1}{10\sqrt{2}}=\dfrac{\sqrt{2}}{10\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{2}}{20}\)

19 tháng 7 2018

c,\(\sqrt{\dfrac{7}{500}}=\dfrac{\sqrt{7}}{\sqrt{500}}=\dfrac{\sqrt{7}}{10\sqrt{5}}=\dfrac{\sqrt{7}.\sqrt{5}}{10\sqrt{5}.\sqrt{5}}=\dfrac{\sqrt{35}}{50}\)