Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: ΔDEF vuông tại E
=>\(\widehat{EDF}+\widehat{EFD}=90^0\)
=>\(\widehat{EFD}+30^0=90^0\)
=>\(\widehat{EFD}=60^0\)
ΔDEF vuông tại E
=>\(ED^2+EF^2=FD^2\)
=>\(ED^2=10^2-6^2=64\)
=>\(ED=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔIFE và ΔIDP có
\(\widehat{IFE}=\widehat{IDP}\)(hai góc so le trong, EF//DP)
IF=ID
\(\widehat{FIE}=\widehat{DIP}\)(hai góc đối đỉnh)
Do đó: ΔIFE=ΔIDP
=>IE=IP
Câu 1:
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-50^0=40^0\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
b: Xét ΔMAB và ΔMDC có
\(\widehat{MBA}=\widehat{MCD}\)(hai góc so le trong, BA//CD)
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔMAB=ΔMDC
=>MA=MD
A B C M d
(Vẽ hình có thể chưa chuẩn xác!)
a) Có \(\Delta ABC\)vuông tại \(A\)có:
\(AB^2+AC^2=BC^2\left(pytago\right)\)
\(3^2+AC^2=5^2\)
\(\Rightarrow AC^2=5^2-3^2=25-9=16\)
\(\Rightarrow AC=\sqrt{16}=4\left(cm\right)\)
Ta có: \(\widehat{ABC}+\widehat{BCA}=90\)độ ( Cùng phụ \(\widehat{BAC}\))
\(\Rightarrow50+\widehat{BCA}=90\Rightarrow\widehat{BCA}=90-50=40\left(cm\right)\)
b) Xét \(\Delta ABM\)và \(\Delta dCM\)(d nhỏ thì đúng hơn, với đề cho) có:
\(\widehat{BMA}=\widehat{dMC}\)(đối đỉnh)
\(BM=CM\)( vì \(M\)là trung điểm \(BC\))
\(\widehat{ABC}=\widehat{BCd}\)( So le trong, \(AB\)// \(Cd\))
\(\Rightarrow\Delta ABM=\Delta dCM\left(g.c.g\right)\)
\(\Rightarrow AB=dC\)(hai cạnh tương ứng)
Xét tứ giác \(ABCd\)có: \(AB=dC\left(cmt\right)\)và \(AB\)// \(dC\left(gt\right)\)
\(\Rightarrow\)Tứ giác \(ABCd\)là hình bình hành
\(\Rightarrow M\)là trung điểm \(Ad\)(tính chất 2 đường chéo trong hình bình hành)
\(\Rightarrow MA=Md\left(đpcm\right)\)
Ps: Check giùm coi có chỗ nào chưa good nha =))
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0