Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Ta có hình vẽ sau:
B A C M E
a)Xét ΔABM và ΔECM có:
BM = CM (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)
MA = ME (gt)
=> ΔABM = ΔACM (c.g.c) (đpcm)
b) Vì ΔABM = ΔECM (ý a)
=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bài 5: Ta có hình vẽ sau:
O A B D C x y E
a) Vì OA = OB (gt) và AC = BD (gt)
=> OC = OD
Xét ΔOAD và ΔOBC có:
OA = OB (gt)
\(\widehat{O}\) : Chung
OC = OD (cm trên)
=> ΔOAD = ΔOBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
b) Vì ΔOAD = ΔOBC(ý a)
=> \(\widehat{OBC}=\widehat{OAD}\) và \(\widehat{ODA}=\widehat{OCB}\)
(những cặp góc tương ứng)
Xét ΔEAC và ΔEBD có:
\(\widehat{OBC}=\widehat{OAD}\) (cm trên)
AC = BD (gt)
\(\widehat{ODA}=\widehat{OCB}\) (cm trên)
=> ΔEAC = ΔEBD (g.c.g) (đpcm)
c) Vì ΔEAC = ΔEBD (ý b)
=> EA = EB (2 cạnh tương ứng)
Xét ΔOAE và ΔOBE có:
OA = OB (gt)
\(\widehat{OBC}=\widehat{OAD}\) (đã cm)
EA = EB (cm trên)
=> ΔOAE = ΔOBE (c.g.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của \(\widehat{xOy}\)
a) Tính BC:
Ta có: Aˆ=90oA^=90o (ΔABC vuông tại A) {o là độ}
Áp dụng định lí PITAGO đối với ΔABC:
Ta có: BC2 = AB2 + AC2
=> BC2 = 62 + 82
=> BC2 = 100
=> BC =100−−−√=10(cm)100=10(cm)
b) ΔABK là tam giác...:
Ta có:
BK (BD) là đường phân giác của góc B (1)
AE vuông góc với BK (BD)
=> BK là đường vuông góc (2)
Từ (1) và (2):
=> ABK là tam giác cân (vì tam giác có đường phân giác đồng thời là đường cao là tam giác cân)
c) DK ⊥ BC:
Vì ΔKED vuông tại E (do AE ⊥ BD)
Ta có: E=90o⇒EKDˆ+KDEˆ=90oE=90o⇒EKD^+KDE^=90o
Áp dụng tính chất góc ngoài của tam giác bằng tổng hai góc trong không kề với nó:
⇒DKCˆ=EKDˆ+KDEˆ=90o
hay DK ⊥ BC.
Kí hiệu tam giác là t/g nhé
a) t/g ABC vuông tại A có: ACB + ABC = 90o
=> 36o + ABC = 90o
=> ABC = 90o - 36o = 54o
b) Xét t/g ABD và t/g EBD có:
AB = BE (gt)
ABD = EBD ( vì BD là phân giác của ABE)
BD là cạnh chung
Do đó, t/g ABD = t/g EBD (c.g.c) (đpcm)
c) Xét t/g ABD vuông tại A và t/g BAK vuông tại B có:
ABD = BAK (so le trong)
AB là cạnh chung
Do đó, t/g ABD = t/g BAK ( cạnh góc vuông và góc nhọn kề)
=> BD = AK (2 cạnh tương ứng) (đpcm)
d) Dễ thấy, CA, BH, FE là 3 đường cao của t/g BCF
Do đó 3 đường này cùng đi qua 1 điểm
Mà BH và CA cắt nhau tại D
Nên EF đi qua D
=> E, D, F thẳng hàng (đpcm)
Câu d sai, lm lại
Nối đoạn FD
t/g BAC = t/g BEF ( cạnh góc vuông và góc nhọn kề)
=> BC = BF (2 cạnh tương ứng)
t/g CBD = t/g FBD (c.g.c)
=> CD = FD (...)
t/g CDH = t/g FDH ( cạnh góc vuông và cạnh huyền)
=> CDH = FDH (...)
Có: CDH + CDE + EDB = 180o
Mà CDH = ADB ( đối đỉnh)
= FDH = EDB
Do đó, CDH + CDE + HDF = 180o
=> EDF = 180o
=> E, D, F thẳng hàng (đpcm)
Câu 1:
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy rA: EB=ED
b: Ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
=>AM//EK