K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Từ điểm cuối của vectơ \(\overrightarrow {{\mu _1}} \) vẽ vectơ \(\overrightarrow {{\mu _3}}  = \overrightarrow {{\mu _2}} \)

Suy ra \(\overrightarrow \mu   = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _2}}  = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _3}}  \Rightarrow \left| {\overrightarrow \mu  } \right| = \left| {\overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _3}} } \right|\)

Ta có: \(\left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _2}} } \right) = 120^\circ  \Rightarrow \left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _3}} } \right) = 60^\circ \)

\( \Rightarrow {\left| {\overrightarrow \mu  } \right|^2} = {\left| {\overrightarrow {{\mu _1}} } \right|^2} + {\left| {\overrightarrow {{\mu _3}} } \right|^2} - 2\left| {\overrightarrow {{\mu _1}} } \right|\left| {\overrightarrow {{\mu _3}} } \right|\cos \left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _3}} } \right)\)

          \( = 1,{6^2} + 1,{6^2} - 2.1,6.1,6.\cos 60^\circ  = \frac{{64}}{{25}}\)

\( \Rightarrow \left| {\overrightarrow \mu  } \right| = \sqrt {\frac{{64}}{{25}}}  = 1,6\)

Vậy độ dài của \(\overrightarrow \mu  \) là 1,6 đơn vị

13 tháng 4 2019

Phương trình hoành độ giao điểm:  - x 2 + 2 x + 3 = m x ⇔ x 2 + m - 2 x - 3 = 0 1

Dễ thấy (1) luôn có 2 nghiệm phân biệt vì  a c = 1 . - 3 = - 3 < 0

Khi đó (d) cắt (P) tại hai điểm phân biệt  A x 1 ; m x 1 B x 2 ; m x 2 , với  x 1 ,   x 2  là nghiệm phương trình (1). Theo Viét, có:  x 1 + x 2 = 2 - m , x 1 x 2 = - 3 x 1 x 2 = - 3

I là trung điểm

A B ⇒ I = x 1 + x 2 2 ; m x 1 + m x 2 2 = 2 − m 2 ; − m 2 + 2 m 2

I ∈ ( Δ ) : y = x − 3 ⇒ − m 2 + 2 m 2 = 2 − m 2 − 3 ⇔ m 2 − 3 m − 4 = 0

⇔ m = − 1 = m 1 m = 4 = m 2 ⇒ m 1 + m 2 = 3

Đáp án cần chọn là: D

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Lớp A:

Trung bình cộng lớp A: \(\overline {{X_A}}  = \frac{{148}}{{25}} = 5,92\)

Bảng tần số:

Điểm

2

3

4

5

6

7

8

9

Số HS

2

2

2

5

2

6

3

3

Do n=25 nên trung vị: số thứ 13

 

Do 2+2+2+5+2=13

=> Trung vị là 6.

Mốt là 7 do 7 có tần số là 6 (cao nhất)

Lớp B:

Trung bình cộng lớp B: \(\overline {{X_B}}  = \frac{{157}}{{25}} = 6,28\)

Bảng tần số:

Điểm

3

4

5

6

7

8

9

10

Số HS

2

2

4

5

7

2

2

1

Do n=25 nên trung vị: số thứ 13

Do 2+2+4+5=13

=> Trung vị là 6.

Mốt là 7 do 7 có tần số là 7 (cao nhất)

Trừ số trung bình ra thì trung vị và mốt của cả hai mẫu số liệu đều như nhau

=> Hai phương pháp học tập hiệu quả như nhau.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Sắp xếp theo thứ tự không giảm:

0  0  0  0  0  0  0  4  6  10

Số trung bình: \(\overline X = \dfrac{{0.7 + 4 + 6 + 10}}{{10}} = 2\)

Trung vị: \({Q_2} = 0\)

+ Mốt: 0

Tứ phân vị:

+ Nửa bên trái của \({Q_2}\):

0  0  0  0  0

=>\({Q_1} = 0\)

+ Nửa bên phải của \({Q_2}\):

0  0  4  6  10

=>\({Q_3} = 4\)

b) Tứ phân vị thứ nhất và trung vị trùng nhau vì mật độ của mẫu số liệu tập trung hết ở nửa trái của trung vị, mẫu số liệu bên trái có số liệu bằng 0 hết.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Nhìn vào biểu đồ ta thấy số lượng trường THPT của các tỉnh năm 2018 đều lớn hơn so với năm 2008 nên khẳng định ở câu a) là đúng.

Số lượng trường THPT ở Gia Lai năm 2008 là gần 35 trường, nhưng số lượng trường năm 2018 lại nhỏ hơn 45 trường do đó khẳng định ở câu b) là sai.

NV
24 tháng 12 2020

1.

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-\dfrac{3}{2}\\y_I=\dfrac{y_A+y_B}{2}=1\end{matrix}\right.\) \(\Rightarrow I\left(-\dfrac{3}{2};1\right)\)

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=0\\y_G=\dfrac{y_A+y_B+y_C}{3}=0\end{matrix}\right.\) \(\Rightarrow G\left(0;0\right)\)

2.

\(\left\{{}\begin{matrix}\overrightarrow{CI}=\left(-\dfrac{9}{2};3\right)\\\overrightarrow{AG}=\left(-2;-3\right)\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}CI=\sqrt{\left(-\dfrac{9}{2}\right)^2+3^2}=\dfrac{3\sqrt{13}}{2}\\AG=\sqrt{\left(-2\right)^2+\left(-3\right)^2}=\sqrt{13}\end{matrix}\right.\)

NV
24 tháng 12 2020

3.

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-7;-4\right)\\\overrightarrow{DC}=\left(3-x;-2-y\right)\end{matrix}\right.\)

\(ABCD\) là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7=3-x\\-4=-2-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=10\\y=2\end{matrix}\right.\) 

\(\Rightarrow D\left(10;2\right)\)

4. Gọi \(H\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CH}=\left(x-3;y+2\right)\\\overrightarrow{AH}=\left(x-2;y-3\right)\\\overrightarrow{BC}=\left(8;-1\right)\end{matrix}\right.\)

H là trực tâm \(\Leftrightarrow\left\{{}\begin{matrix}AH\perp BC\\CH\perp AB\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{CH}.\overrightarrow{AB}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8\left(x-2\right)-1\left(y-3\right)=0\\-7\left(x-3\right)-4\left(y+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x-y=13\\-7x-4y=-13\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{5}{3};\dfrac{1}{3}\right)\)