Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x và y là hai đại lượng tỉ lệ thuận nên:
\(\frac{x_1}{x_2}=\frac{y_1}{y_2}\)
Mà \(y_1-x_1=\frac{-1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{y_1-x_1}{y_2-x_2}=\frac{-\frac{1}{4}}{\frac{8}{15}-\frac{4}{5}}=\frac{-\frac{1}{4}}{-\frac{4}{15}}=\frac{15}{16}\)
\(\frac{x_1}{x_2}=\frac{15}{16}\Rightarrow x_1=\frac{15}{16}.x_2=\frac{15}{16}.\frac{4}{5}=\frac{3}{4}\)
\(\frac{y_1}{y_2}=\frac{15}{16}\Rightarrow y_1=\frac{15}{16}.y_2=\frac{15}{16}.\frac{8}{15}=\frac{1}{2}\)
Vậy x1 = \(\frac{3}{4}\); y1 = \(\frac{1}{2}\)
Do x, y tỉ lệ thuận \(\Rightarrow\) đặt \(y=kx\Rightarrow\left\{{}\begin{matrix}y_1=k.x_1=6k\\y_2=k.x_2=-9k\end{matrix}\right.\)
\(y_1-y_2=10\Rightarrow6k-\left(-9k\right)=10\Rightarrow15k=10\Rightarrow k=\dfrac{2}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{2}{3}.6=4\\y_2=\dfrac{2}{3}.\left(-9\right)=-6\end{matrix}\right.\)
Câu 1:
Vì x và y là hai đại lượng tỉ lệ nghịch nên \(x_1y_1=x_2y_2\)
=>\(3y_1=4y_2\)
hay \(\dfrac{y_1}{3}=\dfrac{y_2}{4}\)
Đặt \(\dfrac{y_1}{3}=\dfrac{y_2}{4}=k\)
=>\(y_1=3k;y_2=4k\)
Ta có: \(y_1^2+y_2^2=100\)
\(\Leftrightarrow25k^2=100\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow y_1=6;y_2=8\)
Trường hợp 2: k=-2
\(\Leftrightarrow y_1=-6;y_2=-8\)
2,
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=...=\dfrac{a_9-9}{1}=\dfrac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}=\dfrac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}=\dfrac{90-45}{45}=\dfrac{45}{45}=1\\ \Rightarrow a_1=a_2=...=a_9=10\)
1) a thiếu đề .
b) \(\dfrac{2x}{3}=\dfrac{2y}{4}=\dfrac{4z}{5}\)
\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{2}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{2}=\dfrac{z}{\dfrac{5}{4}}\)
\(=\dfrac{x+y+z}{\dfrac{3}{2}+2+\dfrac{5}{4}}=\dfrac{49}{\dfrac{19}{4}}\)
\(=\dfrac{196}{19}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{196}{19}.\dfrac{3}{2}=\dfrac{294}{19}\\y=\dfrac{196}{19}.2=\dfrac{392}{19}\\z=\dfrac{196}{19}.\dfrac{5}{4}=\dfrac{245}{19}\end{matrix}\right.\)
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=....=\dfrac{a_9-9}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=...=\dfrac{a_9-1}{1}\)
\(=\dfrac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)
\(=\dfrac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{9+8+...+1}\)
\(=\dfrac{90-45}{45}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a_1-1}{9}=1\Rightarrow a_1-1=9\Rightarrow a_1=10\\\dfrac{a_2-2}{8}=1\Rightarrow a_2-2=8\Rightarrow a_2=10\\\dfrac{a_9-9}{1}=1\Rightarrow a_9-9=1\Rightarrow a_9=10\end{matrix}\right.\)
\(\Rightarrow a_1=a_2=...=a_9=10\)
Lời giải:
Ta có:
\(f(x)=-5x\Rightarrow \left\{\begin{matrix} f(x_1)=-5x_1\\ f(x_2)=-5x_2\end{matrix}\right.\)
\(\Rightarrow f(x_1)-f(x_2)=-5x_1-(-5)x_2=-5(x_1-x_2)=5(x_2-x_1)\)
Do \(x_2> x_1\Rightarrow 5(x_2-x_1)>0\Leftrightarrow f(x_1)-f(x_2)>0 \)
\(\Leftrightarrow f(x_1)> f(x_2)\) (đpcm)
b)
\(\left\{\begin{matrix} f(x_1)=-5x_1\\ f(x_2)=-5x_2\rightarrow 4f(x_2)=-20x_2\end{matrix}\right.\)
\(\Rightarrow f(x_1)+4f(x_2)=-5x_1+(-20)x_2=-5x_1-20x_2\) (1)
Lại có:
\(f(x)=-5x\rightarrow f(x_1+4x_2)=-5(x_1+4x_2)=-5x_1-20x_2\) (2)
Từ (1),(2) suy ra \(f(x_1+4x_2)=f(x_1)+4f(x_2)\)
c)
\(f(x)=-5x\Rightarrow -f(x)=-(-5x)=5x\)
\(f(x)=-5x\Rightarrow f(-x)=-5(-x)=5x\)
Do đó: \(-f(x)=f(-x)\)
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
Vì \(x\) và \(y\) là 2 đại lượng tỉ lệ thuận nên \(x=yk\Rightarrow x_1=y_1k\Leftrightarrow2=3k\Leftrightarrow k=\dfrac{2}{3}\)
\(\Rightarrow x_2=\dfrac{2}{3}y_2\Leftrightarrow\dfrac{x_2}{2}=\dfrac{y_2}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x_2}{2}=\dfrac{y_2}{3}=\dfrac{x_2+y_2}{2+3}=\dfrac{20}{5}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=2.4=8\\y_2=3.4=12\end{matrix}\right.\)
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{-c.-a.-b}{abc}=\dfrac{-abc}{abc}=-1\)
Với \(a+b+c\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{8abc}{abc}=8\)
Vậy....