K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

2

a

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)

b

Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)

Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)

Áp dụng kết quả câu a ta được:

\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

31 tháng 12 2016

Làm ra thì dài làm nên cho b đáp án thôi nhé

\(P=x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2\)

\(=\left(z-y-x\right)\left(z-y+x\right)\left(z+y-x\right)\left(z+y+x\right)\)

20 tháng 12 2017

a,  Ta có: \(B=x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2\)

\(=x^4+y^4+z^4-2x^2y^2-2z^2x^2+2y^2z^2-4y^2z^2\)

\(=\left(x^2-y^2-z^2\right)^2-4y^2z^2\) \(=\left(x^2-y^2-z^2-2yz\right)\left(x^2-y^2-z^2+2yz\right)\)

\(=\left[x^2-\left(y+z\right)^2\right]\left[x^2-\left(y-z\right)^2\right]\)

\(=\left(x-y-z\right)\left(x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)\)

b, Nếu x,y,z là ba cạnh tam giác. áp dụng BĐT tam giác ta có:

\(x-y-z=x-\left(y+z\right)< 0\)

\(\hept{\begin{cases}x+y+z>0\\x+z-y>0\\x+y-z>0\end{cases}}\)

=> B < 0 => đpcm

Trả lời cho mình câu này nữa nhé

https://olm.vn/hoi-dap/question/1115850.html

7 tháng 1 2017

cho đáp án câu (a) lên lấy đáp án (a) => b 

7 tháng 1 2017

Giải ra dài lắm nên cho đáp án nè

a/ B = (z - x - y)(z - x + y)(z + x - y)(z + x + y)

b/ Nó là 3 cạnh tam giác nên

(z - x - y ) < 0

(z - x + y) > 0

(z + x - y) > 0

(z + x + y) > 0

Nên B < 0

b: \(=\dfrac{12\left(y-z\right)^4+3\left(y-z\right)^5}{6\left(y-z\right)^2}=2\left(y-z\right)^2+\dfrac{1}{2}\left(y-z\right)^3\)