Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2
a
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)
b
Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)
Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)
Áp dụng kết quả câu a ta được:
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Làm ra thì dài làm nên cho b đáp án thôi nhé
\(P=x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2\)
\(=\left(z-y-x\right)\left(z-y+x\right)\left(z+y-x\right)\left(z+y+x\right)\)
a, Ta có: \(B=x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2\)
\(=x^4+y^4+z^4-2x^2y^2-2z^2x^2+2y^2z^2-4y^2z^2\)
\(=\left(x^2-y^2-z^2\right)^2-4y^2z^2\) \(=\left(x^2-y^2-z^2-2yz\right)\left(x^2-y^2-z^2+2yz\right)\)
\(=\left[x^2-\left(y+z\right)^2\right]\left[x^2-\left(y-z\right)^2\right]\)
\(=\left(x-y-z\right)\left(x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)\)
b, Nếu x,y,z là ba cạnh tam giác. áp dụng BĐT tam giác ta có:
\(x-y-z=x-\left(y+z\right)< 0\)
\(\hept{\begin{cases}x+y+z>0\\x+z-y>0\\x+y-z>0\end{cases}}\)
=> B < 0 => đpcm
Trả lời cho mình câu này nữa nhé
https://olm.vn/hoi-dap/question/1115850.html
Giải ra dài lắm nên cho đáp án nè
a/ B = (z - x - y)(z - x + y)(z + x - y)(z + x + y)
b/ Nó là 3 cạnh tam giác nên
(z - x - y ) < 0
(z - x + y) > 0
(z + x - y) > 0
(z + x + y) > 0
Nên B < 0
b: \(=\dfrac{12\left(y-z\right)^4+3\left(y-z\right)^5}{6\left(y-z\right)^2}=2\left(y-z\right)^2+\dfrac{1}{2}\left(y-z\right)^3\)