Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}+\frac{1}{1}=2\)
\(\Rightarrow\)\(A< 2\left(đpcm\right)\)
chúc bạn học tốt!!!
Bài 6 :
2S = 6 + 3 + 3/2 + ... + 3/2^8
2S = 6 - 3/2^9 + S
S = 6 - 3/2^9
Vậy S = 6 - 3/2^9
Bài 7 :
Ta có :
A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2
=) A < 2
Vậy A < 2
Bài 8 :
Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )
=) A < B
Vậy A < B
Bài 9:
Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)
=) A > B
Vậy A > B
Bài 1:
Vì \(\frac{196}{197+198}< \frac{196}{197};\frac{197}{197+198}< \frac{197}{198}\)
Nên A = \(\frac{196}{197}+\frac{197}{198}>\frac{196}{197+198}+\frac{197}{197+198}=\frac{196+197}{197+198}=B\)
Vậy A > B
a) Ta có: \(A=\frac{196}{197}+\frac{197}{198}>\frac{196}{197+198}+\frac{197}{197+198}=\frac{196+197}{197+198}=B\)
Vậy A > B
b) Tương tự
\(Do:\frac{196}{197}>\frac{196}{197+198}\)
\(\frac{197}{198}>\frac{197}{197+198}\)
\(\Rightarrow\frac{196}{197}+\frac{197}{198}>\frac{196}{197+198}+\frac{197}{197+198}=\frac{196+197}{197+198}\)
Vậy : \(A>B\)
a)
\(10A=\frac{10^{2002}+10}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)
\(10B=\frac{10^{2003}+10}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)
=> 10A > 10B => A > B
câu trả lời là :
A= \(\frac{196}{197}\)> \(\frac{197}{198}\)
3)
3/5 + 3/7-3/11 / 4/5 + 4/7- 4/11
= 3.( 1/5 + 1/7 - 1/11)/4.(1/5+1/7-1/11)
= 3/4
1,
ta có B = 196+197/197+198 = 196/(197+198) + 197/(197+198)
196/197 > 196/197+198
197/198 > 197/197+198
=> A>B