Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)
Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)
BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)
<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)
Áp dụng BĐT Schur ta có:
\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)
Khi đó BĐT
<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)
<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)
<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)
Dấu bằng xảy ra khi a=b=c
Bài 2
Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)
Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)
=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)
Viết sai 1 số ;v, and I think là Max =))
\(A=\dfrac{bc\sqrt{a-1}+ac\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)
\(=\dfrac{bc\sqrt{1\left(a-1\right)}+\dfrac{ac\sqrt{4\left(b-4\right)}}{2}+\dfrac{ab\sqrt{9\left(c-9\right)}}{3}}{abc}\)
\(\le\dfrac{\dfrac{abc}{2}+\dfrac{abc}{4}+\dfrac{abc}{6}}{abc}=\dfrac{1}{2}+\dfrac{1}{1}+\dfrac{1}{6}=\dfrac{11}{12}\)
Vậy GTLN là.....
Áp dụng BĐT Holder ta có:
\(VT=\left(a+bc\right)\left(\frac{b}{2}+2ac\right)\left(\frac{c}{3}+3ab\right)\)
\(\ge\left(\sqrt[3]{a\cdot\frac{b}{2}\cdot\frac{c}{3}}+\sqrt[3]{bc\cdot2ac\cdot3ab}\right)^3\)
\(=\left(\sqrt[3]{\frac{abc}{6}}+\sqrt[3]{6\left(abc\right)^2}\right)^3\)
\(\ge\left(\sqrt[3]{\frac{6}{6}}+\sqrt[3]{6\cdot6^2}\right)^3=\left(1+6\right)^3=343\)
Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy
⇒ x2 + y2 ≥ 2xy
⇔ \(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2
⇔ \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2
⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)
CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2
⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ \(6\) ( 2)
Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))
Đẳng thức xảy ra khi : x = y
Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )
Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )
Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )
Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)
Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)
Đẳng thức xảy ra khi a = b = 4
Bài 3 : Áp dụng BĐT Bu - nhi - a cốp xki ta có :
\(A=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=\sqrt{2.2}=2\)
Vậy GTLN của A là 2 . Dấu \("="\) xảy ra khi \(x=3\)
\(B=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{\left(1^2+1^2\right)\left(6-x+x+2\right)}=\sqrt{2.8}=4\)
Vậy GTLN của B là 4 . Dấu \("="\) xảy ra khi \(x=2\)
\(C=\sqrt{x}+\sqrt{2-x}\le\sqrt{\left(1^2+1^2\right)\left(x+2-x\right)}=\sqrt{2.2}=2\)
Vậy GTLN của C là 2 . Dấu \("="\) xảy ra khi \(x=1\)
Bài 2:
a .\(\dfrac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\("="\Leftrightarrow a=b\)
b. \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\Leftrightarrow a+b< \left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b< a+b+2\sqrt{ab}\left(a,b>0\right)\)
\(c.a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\) ( t nghĩ là > thôi )
d. \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
\("="\Leftrightarrow a=b=c\)
e. \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}-\dfrac{a+b+2\sqrt{ab}}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a+2b-a-b-2\sqrt{ab}}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\) ( đúng)
\("="\Leftrightarrow a=b\)
1. Không có dấu "=" em nhé.
Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác thì:
$a< b+c\Rightarrow a^2< ab+ac$
$b< a+c\Rightarrow b^2< ba+bc$
$c< a+b\Rightarrow c^2< ca+cb$
$\Rightarrow a^2+b^2+c^2< 2(ab+bc+ac)$
Ta có đpcm.
2.
$(x-1)(x-2)(x-3)(x-4)$
$=(x-1)(x-4)(x-2)(x-3)$
$=(x^2-5x+4)(x^2-5x+6)$
$=(x^2-5x+4)(x^2-5x+4+2)$
$=(x^2-5x+4)^2+2(x^2-5x+4)$
$=(x^2-5x+4)^2+2(x^2-5x+4)+1-1$
$=(x^2-5x+5)^2-1\geq 0-1=-1$ do $(x^2-5x+5)^2\geq 0$ với mọi $x\in\mathbb{R}$
Vậy ta có đpcm.