K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
27 tháng 7 2015
a) Vì \(\frac{AE}{AB}=\frac{10}{15}=\frac{2}{3}\)
\(\frac{AD}{AC}=\frac{12}{18}=\frac{2}{3}\)
nên \(\frac{AE}{AB}=\frac{AD}{AC}\)
Xét Tam giác ABC và AED có
\(\frac{AE}{AB}=\frac{AD}{AC}\)
A góc chung
vậy tam giác ABC đồng dạng tam giác AED.
b) Ta có: \(\frac{MD}{NC}=\frac{\frac{1}{2}DE}{\frac{1}{2}BC}=\frac{DE}{BC}\)
nên \(\frac{DE}{BC}=\frac{MD}{NC}\)
mà tam giác tam giác ABC đồng dạng tam giác AED nên \(\frac{DE}{BC}=\)\(\frac{AE}{AB}=\frac{AD}{AC}\)\(=\frac{2}{3}\)
Vạy \(\frac{MD}{NC}=\frac{2}{3}\)
c) mình chưa nghĩ ra
2, \(\widehat{ABC} + \widehat{BCA} = \widehat{BAC} = 90^0 ⇒ \widehat{BCA} = 90^0 - \widehat{ABC}\)
\(\widehat{ABC} +\widehat{ BAH} = \widehat{BAC} =90^0⇒\widehat{BAH} = 90^0 - \widehat{ABC}\)
\(\widehat{BCA} = \widehat{BAH}\)
XÉT \(\bigtriangleup\)HBA và\(\bigtriangleup\) HAC có :
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{BCA}=\widehat{BAH}\)
⇒ \(\bigtriangleup\)HBA ∼ \(\bigtriangleup\) HAC
b, Áp dụng hệ thức \(b^2=a.b'\) vào \(\bigtriangleup{ABC}\) vuông tại A , ta có :
\(AC^2=BC.CH\) (đpcm)
c, Áp dụng hệ thức \(h^2=b'.c'\) vào \(\bigtriangleup{ABC}\) vuông tại A, ta có :
\(AH^2=BH.CH\) (đpcm)