K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

a. Ta có :

\(\left|x+y\right|\le\left|x\right|+\left|y\right|\Leftrightarrow\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2=\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2+2\left|xy\right|\ge x^2+2xy+y^2\)

\(\Leftrightarrow2\left|xy\right|\ge2xy\Leftrightarrow\left|xy\right|\ge xy\) ( luôn đúng )

Dấu "=" xảy ra <=> x và y cùng dấu 

14 tháng 1 2018

Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng

Dấu \("="\) xảy ra khi a = b.

Cauchy-shwarz:

\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)

\(\Leftrightarrow bx^2\left(a+b\right)+ay^2\left(a+b\right)\ge\left(x+y\right)^2ab\)

\(\Leftrightarrow\left(abx^2-abx^2\right)+\left(aby^2-aby^2\right)+\left(bx\right)^2-2bxay+\left(ay\right)^2\ge0\)

\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) luôn đúng

Dấu \("="\) xảy ra khi \(bx=ay\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\)

14 tháng 1 2018

Hằng đẳng thức thứ 2 à

12 tháng 7 2017

Bài 1:

\(\dfrac{a}{b}< \dfrac{c}{d}\) nên ad<bc (1)

Xét tích; a.(b+d)=ab+ad (2)

b.(a+c)=ba+bc (3)

Từ (1),(2),(3) suy ra a.(b+d)<b.(a+c) .

Do đó \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (4)

Tương tự ta lại có \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (5)

Kết hợp (4),(5) => \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

hay x<y<z

​Bài 2:

a) x là một số hữu tỉ \(\Leftrightarrow\)\(b-15\ne0\Leftrightarrow b\ne15\)

b)x là số hữu tỉ dương\(\Leftrightarrow b-15>0\Leftrightarrow b>15\)

c) x là số hữu tỉ âm \(\Leftrightarrow b-15< 0\Leftrightarrow b< 15\)

Bài 3:

Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\) (dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\))

=>\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}>\dfrac{1}{5}\)

Vậy A\(>\dfrac{1}{5}\)

​Bài 4:

M>0 \(\Leftrightarrow x+5;x+9\) cùng dấu.Ta thấy x+5<x+9 nên chỉ có 2 trường hợp

M>0 \(\left[{}\begin{matrix}x+5;x+9\left(duong\right)\\x+5;x+9\left(am\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5\ge0\\x+9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x\ge-9\end{matrix}\right.\)

​Bài 5:

Ta dùng phương pháp phản chứng:

Giả sử tồn tại 2 số hữu tỉ x và y thỏa mãn đẳng thức \(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)

=>\(\dfrac{1}{x+y}=\dfrac{x+y}{x.y}\Leftrightarrow\left(x+y\right)^2=x.y\)

Đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\) còn x.y <0 ( do x,y là 2 số trái dấu,không đối nhau)

Vậy không tồn tại 2 số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đề bài

Bài 3:

\(=\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\dfrac{1}{131}\)

\(=\dfrac{21+10+4}{35}+\dfrac{-9-2-7}{18}+\dfrac{1}{131}\)

=1/131

Bài 5:

a: Phần nguyên là 0

b: Phần nguyên là -1

2 tháng 7 2017

Bài 1:

Gọi phân số cần tìm là \(\dfrac{x}{18}\)

Theo đề bài đã cho, ta có:

\(\dfrac{-5}{6}< \dfrac{x}{18}< \dfrac{-1}{2}\)

\(\Rightarrow\dfrac{-15}{18}< \dfrac{x}{18}< \dfrac{-9}{18}\)

\(\Rightarrow-15< x< -9\)

\(\Rightarrow x=\left\{-14;-13;-12;-11;-10\right\}\)

Vậy các phân số cần tìm là:

\(\dfrac{-14}{18};\dfrac{-13}{18};\dfrac{-12}{18};\dfrac{-11}{18};\dfrac{-10}{18}\)

2 tháng 7 2017

Bài 2:

a) Để x là một số hữu tỉ

\(x=\dfrac{5}{a-1}\) \(\in Q\)

\(\Rightarrow a-1\) khác 0

\(\Rightarrow a\) khác 1.

b) Để x là một số dương.

\(x=\dfrac{5}{a-1}\) \(>0\)

\(\Rightarrow a-1>0\)

\(\Rightarrow a>1\)

c) Để x là một số hữu tỉ âm

\(x=\dfrac{5}{a-1}\) <0\(\Rightarrow a-1< 0\)

d) Để x là một số nguyên

\(x=\dfrac{5}{a-1}\) \(\in Z\)

\(\Rightarrow a-1⋮5\)

\(\Rightarrow a-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng sau:


a-1 1 -1 5 -5
a 2 0 6 -4

Vậy a= 2; 0; 6; -4

15 tháng 8 2017

\(\left\{{}\begin{matrix}x=\dfrac{a}{m}\Rightarrow x=\dfrac{2a}{2m}\\y=\dfrac{b}{m}\Rightarrow y=\dfrac{2b}{2m}\end{matrix}\right.\)

\(x< y\Rightarrow a< b\)

\(\Rightarrow\left\{{}\begin{matrix}a+a< a+b\Rightarrow2a< a+b\Rightarrow\dfrac{2a}{m}< \dfrac{a+b}{m}\Rightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}\\b+b>a+b\Rightarrow2b>a+b\Rightarrow\dfrac{2b}{m}>\dfrac{a+b}{m}\Rightarrow\dfrac{2b}{2m}>\dfrac{a+b}{2m}\end{matrix}\right.\)\(\Rightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

\(\Leftrightarrow x< z< y\)

\(\rightarrowđpcm\)

15 tháng 8 2017

\(x< y\Rightarrow\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\)

\(x=\dfrac{a}{m}=\dfrac{2a}{2m}=\dfrac{a+a}{2m}\\ y=\dfrac{b}{m}=\dfrac{2b}{2m}=\dfrac{b+b}{2m}\\ a< b\Rightarrow\dfrac{a+a}{2m}< \dfrac{a+b}{2m}< \dfrac{a+b}{2m}\Leftrightarrow x< z< y\)

16 tháng 8 2016

x<y suy ra a/m<b/m suy ra a<b (vì m<0)

mà a<b suy ra a+b < b+b

suy ra a+b<2b

suy ra a+b/2 <b

suy ra a+b/2m <b/m

suy ra a+b/2m< y

Suy ra z<y   (1)

Mặt khác a<b suy ra a+a <a+b

suy ra 2a <a+b

suy ra 2a/m <a+b/ m

suy ra a/m < a+b/2m

suy ra x<z    (2)

Từ (1) và (2)

suy ra x<z<y