K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2020

Đặt \(x^2-\left(2m+1\right)x+m^2+m=0\)

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)=1\)

Phương trình có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=\frac{2m+1-1}{2}=m\\x_2=\frac{2m+1+1}{2}=m+1\end{matrix}\right.\)

\(-2< x_1< x_2< 4\)

\(\Leftrightarrow-2< m< m+1< 4\)

\(\Rightarrow-2< m< 3\)

123 + 345 = 468

468 + 567 = 1035

1035 - 236 = 799

799 - 189 = 610

610 + 853 = 1463

5 tháng 6 2020

x1<2<x2

a: Khi m=2 thì pt sẽ là \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-2m\right)\)

\(=4m^2-8m+4-4m^2+8m=4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(x_1+x_2=x_1\cdot x_2\)

\(\Leftrightarrow m^2-2m=2\left(m-1\right)=2m-2\)

\(\Leftrightarrow m^2-4m+2=0\)

\(\Leftrightarrow\left(m-2\right)^2=2\)

hay \(m\in\left\{\sqrt{2}+2;-\sqrt{2}+2\right\}\)

30 tháng 12 2019

PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)

a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong

b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)

c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\)  quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)

      \(4< m< 6\)