Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T = [ x 2 + ( a − b ) x − a b x 2 − ( a − b ) x − a b . x 2 − ( a + b ) x + a b x 2 + ( a + b ) x + a b ] : [ x 2 − ( b − 1 ) x − b x 2 + ( b + 1 ) x + b . x 2 − ( b + 1 ) x + b x 2 − ( 1 − b ) x − b ] = [ ( x − b ) ( x + a ) ( x − a ) ( x + b ) . ( x − a ) ( x − b ) ( x + a ) ( x + b ) ] : [ ( x − b ) ( x + 1 ) ( x + b ) ( x + 1 ) . ( x − 1 ) ( x − b ) ( x + b ) ( x − 1 ) ] = ( x − b ) 2 ( x + b ) 2 : ( x − b ) 2 ( x + b ) 2 = 1
Vậy T = 1
Đáp án cần chọn là: A
a/ \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
Thay x = 2 vào A được:
\(=-3.2^2+7.2-4=-2\)
Vậy: Giá trị của A khi x = 2 là -2
==========
b/ \(B=126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)
\(=126y^3+x^3-125y^3\)
Thay x = -5 và y = -3 vào B được:
\(126.\left(-3\right)^3+\left(-5\right)^3-125.\left(-3\right)^3=-152\)
Vậy: Giá trị của B tại x = -5 và y = -3 là -152
==========
c/ \(C=a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^3\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
Thay a = -4 và b = 4 vào C được:
\(2.4^3+3.\left(-4\right)^2.4-3.\left(-4\right).4^2=512\)
Vậy: Giá trị của C tại a = -4 vào b = 4 là 512
a:Ta có: \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot2^2+7\cdot2-4\)
\(=-12-4+14=-2\)
c: Ta có: \(C=a^3+b^3-\left(a-b\right)\left(a^2-2ab+b^2\right)\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
\(=2\cdot4^3+3\cdot\left(-4\right)^2\cdot4-3\cdot\left(-4\right)\cdot4^2\)
\(=128+192+192=512\)
Thay \(x=\frac{a-b}{a+b};y=\frac{b-c}{b+c};z=\frac{c-a}{c+a}\) vào (x + 1)(y + 1)(z + 1) và (1 - x)(1 - y)(1 - z) ta có:
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(\frac{a-b}{a+b}+1\right)\left(\frac{b-c}{b+c}+1\right)\left(\frac{c-a}{c+a}+1\right)\)
\(=\frac{2a}{a+b}.\frac{2b}{b+c}.\frac{2c}{c+a}=\frac{2a.2b.2c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\left(1\right)\)
\(\left(1-x\right)\left(1-y\right)\left(1-z\right)=\left(1-\frac{a-b}{a+b}\right)\left(1-\frac{b-c}{b+c}\right)\left(1-\frac{c-a}{c+a}\right)\)
\(=\frac{2b}{a+b}.\frac{2c}{b+c}.\frac{2a}{c+a}=\frac{2b.2c.2a}{\left(a+b\right).\left(b+c\right).\left(c+a\right)}\left(2\right)\)
Từ (1) và (2) => đpcm