Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tacó\)
\(13\equiv1\left(mod4\right)\Rightarrow13^n\equiv1\left(mod4\right)\)
\(\Rightarrow\left(13^n+3\right)⋮4\Leftrightarrow13^n\left(13^n+3\right)\left(13^n+4\right)\left(13^n+1\right)⋮4\left(đpcm\right)\)
Vì n \(\in\) N nên 13n lẻ \(\Rightarrow\) 13n + 3 và 13n + 1 đều chẵn \(\Rightarrow\) (13n + 3) . (13n + 1) \(⋮\) 4 \(\Rightarrow\) 13n . (13n + 3) . (13n + 4) . (13n + 1) \(⋮\) 4
a) https://olm.vn/hoi-dap/question/1286785.html
b)
SSH là :
( x - 1 ) : 1 + 1 = x
Tổng là :
( x + 1 ) . x : 2 = 210
x ( x + 1 ) = 420
mà x và x + 1 là 2 số liên tiếp => 420 = 20 x 21 => x = 20
Vậy,............
BĐT\(\Leftrightarrow\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(a+c\right)}+\frac{abc}{c^3\left(a+b\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}{\frac{1}{b}+\frac{1}{c}.\frac{1}{a}+\frac{1}{c}.\frac{1}{a}+\frac{1}{b}}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\). Áp dụng BĐT: AM-GM ta có:
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
\(\frac{b^2}{a+b}+\frac{a+c}{4}\ge2\sqrt{\frac{b^2}{a+b}.\frac{a+b}{4}}=b\)
\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{c^2}{a+b}+\frac{a+b}{4}}=c\)
Cộng theo vế 3 BĐT trên ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
hay \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\)
Dấu bằng = xảy ra khi a = b = c = 1
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\Rightarrow xyz=1;x>0;y>0;z>0\)
Ta cần chứng minh bất đẳng thức sau : \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
Sử dụng bất đẳng thức Bunhiacopxki cho 2 bộ số :
\(\left(\sqrt{y+z};\sqrt{z+x};\sqrt{x+y}\right);\left(\frac{x}{\sqrt{y+z}};\frac{y}{\sqrt{z+x}};\frac{z}{\sqrt{x+y}}\right)\)
Ta có : \(\left(x+y+z\right)^2\le\left(x+y+z+x+y+z\right)A\)
\(\Rightarrow A\ge\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\left(Q.E.D\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=1\Leftrightarrow a=b=c=1\)
\(25.\left(\frac{bc+ab+ac}{abc}\right)+351\ge88.\left(a^2+b^2+c^2\right)\)
\(25\left(\frac{bc+ab+ac}{abc}\right)+351=25.abc.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\right)+351.abc\ge88.\left(a^2+b^2+c^2\right)\)
25.( bc+ ac + ab )+ 351 . abc \(\ge88abc\left(a^2+b^2+c^2\right)\)
Đến đây bạn tự làm tiếp nha ! Mình cũng không chắc về bài này cho lắm
\(A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)
Ta có: \(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+2+...+2\right)+\left(3+3+3+...+3\right)+...+\left(2019+2019\right)+2020\)
Trong đó có: 2020 số 1, 2019 số 2, 2018 số 3,..., 2 số 2019, 1 số 2020
Vậy: \(\left(1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+3+...+3\right)+...+2020\)
\(=1\times2020+2\times2019+3\times2018+...+2020\times1\)
\(\Rightarrow A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)
\(A=\dfrac{1\times2020+2\times2019+3\times2018+...+2020\times1}{1\times2020+2\times2019+3\times2018+...+2020\times1}=1\)
Gọi A là vế trái của BĐT cần chứng minh. Không mất tính tổng quát, ta giả sử a + b + c = 3. Áp dụng BĐT AM - GM ta có:
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{8bc\left(4a+4b+c\right)}}+\frac{ab\left(4a+4b+c\right)}{27}\)\(\ge\frac{1}{2}\left(a+b\right)\)
Suy ra
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}\)\(+\frac{ab\left(4a+4b+c\right)}{54}\ge\frac{1}{4}\left(a+b\right)\)
Tương tự
\(\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\frac{bc\left(4b+4c+a\right)}{54}\ge\frac{1}{4}\left(b+c\right)\)
và \(\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}+\frac{ca\left(4c+4a+b\right)}{54}\ge\frac{1}{4}\left(c+a\right)\)
Cộng ba BĐT trên ta có:
\(\frac{1}{2\sqrt{2}}A\ge B\)
Với \(A=\frac{1}{54}[ab\left(4a+4b+c\right)+bc\left(4b+4c+a\right)\)
\(+ca\left(4c+4a+b\right)]\)
\(=\frac{1}{54}\left[4ab\left(a+b\right)+4bc\left(b+c\right)+4ca\left(c+a\right)+3abc\right]\)
\(=\frac{1}{54}\left[4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\right]\)
\(\le\frac{1}{54}\left(a+b+c\right)^3=\frac{1}{2}\)
và \(B=\frac{1}{4}.2\left(a+b+c\right)=\frac{3}{2}\)
Suy ra \(\frac{1}{2\sqrt{2}}A\ge\frac{3}{2}-\frac{1}{2}=1\Rightarrow A\ge2\sqrt{2}\)
Vậy
\(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{bc\left(4a+4b+c\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4a+b\right)}}\ge2\sqrt{2}\)(đpcm)
#)Giải :
Đặt \(K=1+a+a^2+...+a^n\Rightarrow aK=1.a+a.a+a^2.a+...+a^n.a\)
\(=a+a^2+a^3+...+a^{n+1}\)
\(\Rightarrow aK-K=\left(a+a^2+a^3+...+a^{n+1}\right)-\left(1+a+a^2+...+a^n\right)=a^{n+1}-a\)
\(\Rightarrow K=\frac{a^{n+1}-a}{a}\)