Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1+3+3^2+...+3^100
3A=3x( 1+3+3^2+...+3^100 )
3A-A=(3+3^2+...+3^101)-( 1+3+3^2+...+3^100 )
2A=3^101-1
A= \(\frac{3^{101}-1}{2}\)
B= 1+3^2+3^4+...+3^100
\(3^2B\)= 3^2x( 1+3^2+3^4+...+3^100)
9B-B= (3^2+3^4+..+3^102)-( 1+3^2+3^4+...+3^100 )
8B= 3^102-1
B=\(\frac{3^{102}-1}{8}\)
Giải:Ta có:\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
\(=>A=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}\)
\(=>A=\frac{a^2+a-1}{a^2+a+1}\)
\(=>A=\frac{-1}{1}\)
tk gium minh nha neu thay dung nha!
Từ đề bài, ta suy ra:
\(\frac{2020\left(1+2021\right)}{2019\left(2019+3\right)}=\frac{2020\cdot2022}{2019\cdot2022}=\frac{2020}{2019}\)
\(\frac{2020+2020.2021}{2019^2+2019.3}=\frac{2020.\left(1+2021\right)}{2019.\left(2019+3\right)}=\frac{2020.2022}{2019.2022}=\frac{2020}{2019}=1\frac{1}{2019}\)
Chúc bn học tốt
chú thich dấu nhân là . nha
ta có
\(\frac{16.7-5}{16.16+11}\)\(=\frac{7-5}{16+11}=\frac{2}{27}\)
ok đúng 100%
\(\frac{x}{8}=\frac{-15}{30}\)
\(\Rightarrow x=\frac{-15.8}{30}\)
\(\Rightarrow x=-4\)
\(\frac{y}{6}=\frac{15}{-45}\)
\(\Rightarrow y=\frac{15.6}{-45}\)
\(\Rightarrow y=-2\)
A) \(\frac{x}{8}=\frac{-15}{30}\)
\(\Leftrightarrow\)\(x=\frac{\left(-15\right).8}{30}=-4\)
Vậy...
B) \(\frac{y}{6}=\frac{15}{-45}\)
\(\Leftrightarrow\)\(y=\frac{15.6}{-45}=-2\)
Vậy....
\(A=\dfrac{1+2+...+9}{11+12+...+19}=\dfrac{\left(9+1\right)\times9:2}{\left(19+11\right)\times9:2}=\dfrac{45}{135}=\dfrac{1}{3}\)